Suppr超能文献

几何代数是否为贝尔定理提供了一个漏洞?

Does Geometric Algebra Provide a Loophole to Bell's Theorem?

作者信息

Gill Richard David

机构信息

Mathematical Institute, Faculty of Science, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands.

出版信息

Entropy (Basel). 2019 Dec 31;22(1):61. doi: 10.3390/e22010061.

Abstract

In 2007, and in a series of later papers, Joy Christian claimed to refute Bell's theorem, presenting an alleged local realistic model of the singlet correlations using techniques from geometric algebra (GA). Several authors published papers refuting his claims, and Christian's ideas did not gain acceptance. However, he recently succeeded in publishing yet more ambitious and complex versions of his theory in fairly mainstream journals. How could this be? The mathematics and logic of Bell's theorem is simple and transparent and has been intensely studied and debated for over 50 years. Christian claims to have a mathematical counterexample to a purely mathematical theorem. Each new version of Christian's model used new devices to circumvent Bell's theorem or depended on a new way to misunderstand Bell's work. These devices and misinterpretations are in common use by other Bell critics, so it useful to identify and name them. I hope that this paper can serve as a useful resource to those who need to evaluate new "disproofs of Bell's theorem". Christian's fundamental idea is simple and quite original: he gives a probabilistic interpretation of the fundamental GA equation a · b = ( a b + b a ) / 2 . After that, ambiguous notation and technical complexity allows sign errors to be hidden from sight, and new mathematical errors can be introduced.

摘要

2007年以及在随后的一系列论文中,乔伊·克里斯蒂安声称反驳了贝尔定理,他运用几何代数(GA)技术提出了一个所谓的单重态关联的局域实在模型。几位作者发表论文反驳他的观点,克里斯蒂安的想法未被接受。然而,他最近成功地在相当主流的期刊上发表了其理论更具野心和复杂的版本。这怎么可能呢?贝尔定理的数学和逻辑简单明了,并且已经被深入研究和辩论了五十多年。克里斯蒂安声称对一个纯数学定理有一个数学反例。克里斯蒂安模型的每个新版本都使用新手段来规避贝尔定理,或者依赖于一种新的误解贝尔工作的方式。这些手段和误解在其他反驳贝尔定理的人当中很常见,所以识别并命名它们是有用的。我希望本文能为那些需要评估新的“贝尔定理证伪”的人提供一个有用的参考。克里斯蒂安的基本思想简单且颇为新颖:他对基本的几何代数方程a·b = (ab + ba)/2给出了一种概率解释。在此之后,模糊的符号表示和技术复杂性使得符号错误得以隐藏,并且可能引入新的数学错误。

相似文献

1
Does Geometric Algebra Provide a Loophole to Bell's Theorem?
Entropy (Basel). 2019 Dec 31;22(1):61. doi: 10.3390/e22010061.
2
No time loophole in Bell's theorem: the Hess-Philipp model is nonlocal.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14632-5. doi: 10.1073/pnas.182536499. Epub 2002 Oct 31.
3
4
Violation of local realism with freedom of choice.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19708-13. doi: 10.1073/pnas.1002780107. Epub 2010 Nov 1.
6
Gull's Theorem Revisited.
Entropy (Basel). 2022 May 11;24(5):679. doi: 10.3390/e24050679.
7
Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons.
Phys Rev Lett. 2015 Dec 18;115(25):250401. doi: 10.1103/PhysRevLett.115.250401. Epub 2015 Dec 16.
8
Beyond Bell's theorem: realism and locality without Bell-type correlations.
Sci Rep. 2017 Nov 6;7(1):14570. doi: 10.1038/s41598-017-14956-y.
9
Experimental Counterexample to Bell's Locality Criterion.
Entropy (Basel). 2022 Nov 29;24(12):1742. doi: 10.3390/e24121742.
10
Experimental violation of a Bell's inequality with efficient detection.
Nature. 2001 Feb 15;409(6822):791-4. doi: 10.1038/35057215.

引用本文的文献

1
Response to 'Comment on "Quantum correlations are weaved by the spinors of the Euclidean primitives"'.
R Soc Open Sci. 2022 Nov 16;9(11):220147. doi: 10.1098/rsos.220147. eCollection 2022 Nov.
2
Gull's Theorem Revisited.
Entropy (Basel). 2022 May 11;24(5):679. doi: 10.3390/e24050679.
3
Comment on 'Quantum correlations are weaved by the spinors of the Euclidean primitives'.
R Soc Open Sci. 2022 Feb 16;9(2):201909. doi: 10.1098/rsos.201909. eCollection 2022 Feb.
4

本文引用的文献

2
Pearle's Hidden-Variable Model Revisited.
Entropy (Basel). 2019 Dec 18;22(1):1. doi: 10.3390/e22010001.
3
Quantum correlations are weaved by the spinors of the Euclidean primitives.
R Soc Open Sci. 2018 May 30;5(5):180526. doi: 10.1098/rsos.180526. eCollection 2018 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验