Suppr超能文献

基于非极大值抑制和熵分析的磁共振图像质量评估

Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis.

作者信息

Obuchowicz Rafał, Oszust Mariusz, Bielecka Marzena, Bielecki Andrzej, Piórkowski Adam

机构信息

Department of Diagnostic Imaging, Jagiellonian University Medical College, 19 Kopernika Street, 31-501 Cracow, Poland.

Department of Computer and Control Engineering, Rzeszow University of Technology, W. Pola 2, 35-959 Rzeszow, Poland.

出版信息

Entropy (Basel). 2020 Feb 16;22(2):220. doi: 10.3390/e22020220.

Abstract

An investigation of diseases using magnetic resonance (MR) imaging requires automatic image quality assessment methods able to exclude low-quality scans. Such methods can be also employed for an optimization of parameters of imaging systems or evaluation of image processing algorithms. Therefore, in this paper, a novel blind image quality assessment (BIQA) method for the evaluation of MR images is introduced. It is observed that the result of filtering using non-maximum suppression (NMS) strongly depends on the perceptual quality of an input image. Hence, in the method, the image is first processed by the NMS with various levels of acceptable local intensity difference. Then, the quality is efficiently expressed by the entropy of a sequence of extrema numbers obtained with the thresholded NMS. The proposed BIQA approach is compared with ten state-of-the-art techniques on a dataset containing MR images and subjective scores provided by 31 experienced radiologists. The Pearson, Spearman, Kendall correlation coefficients and root mean square error for the method assessing images in the dataset were 0.6741, 0.3540, 0.2428, and 0.5375, respectively. The extensive experimental evaluation of the BIQA methods reveals that the introduced measure outperforms related techniques by a large margin as it correlates better with human scores.

摘要

利用磁共振(MR)成像对疾病进行研究需要能够排除低质量扫描的自动图像质量评估方法。此类方法还可用于优化成像系统参数或评估图像处理算法。因此,本文介绍了一种用于评估MR图像的新型盲图像质量评估(BIQA)方法。据观察,使用非极大值抑制(NMS)进行滤波的结果在很大程度上取决于输入图像的感知质量。因此,在该方法中,首先使用具有不同可接受局部强度差异水平的NMS对图像进行处理。然后,通过对经阈值处理的NMS获得的极值数序列的熵来有效地表示质量。在所提出的BIQA方法与十种最新技术在一个包含MR图像和由31位经验丰富的放射科医生提供的主观评分的数据集上进行了比较。该方法对数据集中图像进行评估时的皮尔逊、斯皮尔曼、肯德尔相关系数和均方根误差分别为0.6741、0.3540、0.2428和0.5375。对BIQA方法进行的广泛实验评估表明,所引入的度量方法大大优于相关技术,因为它与人类评分的相关性更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1842/7516651/8c19e8bf9462/entropy-22-00220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验