Suppr超能文献

一种特征丰富的完全盲图像质量评估器。

A feature-enriched completely blind image quality evaluator.

出版信息

IEEE Trans Image Process. 2015 Aug;24(8):2579-91. doi: 10.1109/TIP.2015.2426416. Epub 2015 Apr 24.

Abstract

Existing blind image quality assessment (BIQA) methods are mostly opinion-aware. They learn regression models from training images with associated human subjective scores to predict the perceptual quality of test images. Such opinion-aware methods, however, require a large amount of training samples with associated human subjective scores and of a variety of distortion types. The BIQA models learned by opinion-aware methods often have weak generalization capability, hereby limiting their usability in practice. By comparison, opinion-unaware methods do not need human subjective scores for training, and thus have greater potential for good generalization capability. Unfortunately, thus far no opinion-unaware BIQA method has shown consistently better quality prediction accuracy than the opinion-aware methods. Here, we aim to develop an opinion-unaware BIQA method that can compete with, and perhaps outperform, the existing opinion-aware methods. By integrating the features of natural image statistics derived from multiple cues, we learn a multivariate Gaussian model of image patches from a collection of pristine natural images. Using the learned multivariate Gaussian model, a Bhattacharyya-like distance is used to measure the quality of each image patch, and then an overall quality score is obtained by average pooling. The proposed BIQA method does not need any distorted sample images nor subjective quality scores for training, yet extensive experiments demonstrate its superior quality-prediction performance to the state-of-the-art opinion-aware BIQA methods. The MATLAB source code of our algorithm is publicly available at www.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm.

摘要

现有的盲图像质量评估(BIQA)方法大多是基于意见的。它们从具有相关人类主观评分的训练图像中学习回归模型,以预测测试图像的感知质量。然而,这种基于意见的方法需要大量具有相关人类主观评分和多种失真类型的训练样本。基于意见的方法学习到的 BIQA 模型通常具有较弱的泛化能力,因此限制了它们在实际中的可用性。相比之下,基于意见的方法不需要人类主观评分进行训练,因此具有更好的泛化能力的潜力。不幸的是,到目前为止,还没有一种基于意见的 BIQA 方法在质量预测准确性方面始终优于基于意见的方法。在这里,我们旨在开发一种可以与现有的基于意见的方法竞争且可能超越它们的基于意见的方法。通过整合从多个线索中得出的自然图像统计特征,我们从一组原始自然图像中学习图像块的多元高斯模型。使用学习到的多元高斯模型,我们使用类似于 Bhattacharyya 的距离来衡量每个图像块的质量,然后通过平均池化获得整体质量得分。所提出的 BIQA 方法不需要任何失真样本图像,也不需要主观质量评分进行训练,但广泛的实验证明,它的质量预测性能优于最先进的基于意见的 BIQA 方法。我们算法的 MATLAB 源代码可在 www.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm 上公开获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验