IEEE Trans Image Process. 2017 Aug;26(8):3951-3964. doi: 10.1109/TIP.2017.2708503. Epub 2017 May 26.
Objective assessment of image quality is fundamentally important in many image processing tasks. In this paper, we focus on learning blind image quality assessment (BIQA) models, which predict the quality of a digital image with no access to its original pristine-quality counterpart as reference. One of the biggest challenges in learning BIQA models is the conflict between the gigantic image space (which is in the dimension of the number of image pixels) and the extremely limited reliable ground truth data for training. Such data are typically collected via subjective testing, which is cumbersome, slow, and expensive. Here, we first show that a vast amount of reliable training data in the form of quality-discriminable image pairs (DIPs) can be obtained automatically at low cost by exploiting large-scale databases with diverse image content. We then learn an opinion-unaware BIQA (OU-BIQA, meaning that no subjective opinions are used for training) model using RankNet, a pairwise learning-to-rank (L2R) algorithm, from millions of DIPs, each associated with a perceptual uncertainty level, leading to a DIP inferred quality (dipIQ) index. Extensive experiments on four benchmark IQA databases demonstrate that dipIQ outperforms the state-of-the-art OU-BIQA models. The robustness of dipIQ is also significantly improved as confirmed by the group MAximum Differentiation competition method. Furthermore, we extend the proposed framework by learning models with ListNet (a listwise L2R algorithm) on quality-discriminable image lists (DIL). The resulting DIL inferred quality index achieves an additional performance gain.
客观的图像质量评估在许多图像处理任务中至关重要。在本文中,我们专注于学习盲图像质量评估(BIQA)模型,这些模型可以预测数字图像的质量,而无需访问其原始的原始质量基准作为参考。学习 BIQA 模型的最大挑战之一是图像空间(其维度是图像像素的数量)与训练用的极其有限的可靠地面实况数据之间的冲突。这种数据通常通过主观测试收集,这是繁琐、缓慢且昂贵的。在这里,我们首先表明,可以通过利用具有各种图像内容的大规模数据库以低成本自动获得大量可靠的训练数据,这些数据以质量可区分的图像对(DIP)的形式存在。然后,我们使用 RankNet(一种成对学习到排名(L2R)算法)从数百万个 DIP 中学习一个没有意见感知的 BIQA(OU-BIQA,意味着没有使用主观意见进行训练)模型,每个 DIP 都与一个感知不确定性级别相关联,从而产生 DIP 推断质量(dipIQ)指数。在四个基准 IQA 数据库上进行的广泛实验表明,dipIQ 优于最先进的 OU-BIQA 模型。通过使用 Group MaxDiff 竞争方法确认,dipIQ 的稳健性也得到了显著提高。此外,我们通过使用 ListNet(一种列表式 L2R 算法)在质量可区分的图像列表(DIL)上学习模型来扩展所提出的框架。由此产生的 DIL 推断质量指数实现了额外的性能增益。