Suppr超能文献

量子非定域性的双面雅努斯

Two Faced Janus of Quantum Nonlocality.

作者信息

Khrennikov Andrei

机构信息

International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, SE-351 95 Växjö, Sweden.

出版信息

Entropy (Basel). 2020 Mar 6;22(3):303. doi: 10.3390/e22030303.

Abstract

This paper is a new step towards understanding why "quantum nonlocality" is a misleading concept. Metaphorically speaking, "quantum nonlocality" is Janus faced. One face is an apparent nonlocality of the Lüders projection and another face is Bell nonlocality (a wrong conclusion that the violation of Bell type inequalities implies the existence of mysterious instantaneous influences between distant physical systems). According to the Lüders projection postulate, a quantum measurement performed on one of the two distant entangled physical systems modifies their compound quantum state instantaneously. Therefore, if the quantum state is considered to be an attribute of the individual physical system and if one assumes that experimental outcomes are produced in a perfectly random way, one quickly arrives at the contradiction. It is a primary source of speculations about a spooky action at a distance. Bell nonlocality as defined above was explained and rejected by several authors; thus, we concentrate in this paper on the apparent nonlocality of the Lüders projection. As already pointed out by Einstein, the quantum paradoxes disappear if one adopts the purely statistical interpretation of quantum mechanics (QM). In the statistical interpretation of QM, if probabilities are considered to be objective properties of random experiments we show that the Lüders projection corresponds to the passage from joint probabilities describing all set of data to some marginal conditional probabilities describing some particular subsets of data. If one adopts a subjective interpretation of probabilities, such as QBism, then the Lüders projection corresponds to standard Bayesian updating of the probabilities. The latter represents degrees of beliefs of local agents about outcomes of individual measurements which are placed or which will be placed at distant locations. In both approaches, probability-transformation does not happen in the physical space, but only in the information space. Thus, all speculations about spooky interactions or spooky predictions at a distance are simply misleading. Coming back to Bell nonlocality, we recall that in a recent paper we demonstrated, using exclusively the quantum formalism, that CHSH inequalities may be violated for some quantum states only because of the incompatibility of quantum observables and Bohr's complementarity. Finally, we explain that our criticism of quantum nonlocality is in the spirit of Hertz-Boltzmann methodology of scientific theories.

摘要

本文朝着理解为何“量子非定域性”是一个误导性概念迈出了新的一步。打个比方,“量子非定域性”有两张面孔。一面是吕德斯投影的明显非定域性,另一面是贝尔非定域性(一种错误结论,即违反贝尔型不等式意味着在遥远物理系统之间存在神秘的瞬时影响)。根据吕德斯投影假设,对两个遥远的纠缠物理系统之一进行的量子测量会瞬间改变它们的复合量子态。因此,如果将量子态视为单个物理系统的一种属性,并且如果假设实验结果是以完全随机的方式产生的,那么很快就会得出矛盾。这是关于超距幽灵作用猜测的主要根源。上述定义的贝尔非定域性已被几位作者解释并否定;因此,我们在本文中专注于吕德斯投影的明显非定域性。正如爱因斯坦早已指出的,如果采用量子力学(QM)的纯统计解释,量子悖论就会消失。在量子力学的统计解释中,如果将概率视为随机实验的客观属性,我们表明吕德斯投影对应于从描述所有数据集的联合概率到描述某些特定数据子集的一些边际条件概率的转变。如果采用概率的主观解释,比如量子贝叶斯主义(QBism),那么吕德斯投影对应于概率的标准贝叶斯更新。后者代表本地主体对放置在或将会放置在遥远位置的单个测量结果的置信度。在这两种方法中,概率变换并非发生在物理空间中,而仅发生在信息空间中。因此,所有关于超距幽灵相互作用或幽灵预测的猜测都只是误导性的。回到贝尔非定域性,我们回顾一下,在最近的一篇论文中,我们仅使用量子形式体系证明,某些量子态可能违反CHSH不等式仅仅是因为量子可观测量的不相容性和玻尔的互补性。最后,我们解释说,我们对量子非定域性的批评符合赫兹 - 玻尔兹曼科学理论方法论的精神。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff64/7516761/1623ba7188b5/entropy-22-00303-g001.jpg

相似文献

1
Two Faced Janus of Quantum Nonlocality.
Entropy (Basel). 2020 Mar 6;22(3):303. doi: 10.3390/e22030303.
2
Is the Devil in ?
Entropy (Basel). 2021 May 19;23(5):632. doi: 10.3390/e23050632.
3
Get Rid of Nonlocality from Quantum Physics.
Entropy (Basel). 2019 Aug 18;21(8):806. doi: 10.3390/e21080806.
4
Contextuality or Nonlocality: What Would John Bell Choose Today?
Entropy (Basel). 2023 Feb 2;25(2):280. doi: 10.3390/e25020280.
5
There Is No Spooky Action at a Distance in Quantum Mechanics.
Entropy (Basel). 2022 Apr 16;24(4):560. doi: 10.3390/e24040560.
6
Contextuality, Complementarity, Signaling, and Bell Tests.
Entropy (Basel). 2022 Sep 28;24(10):1380. doi: 10.3390/e24101380.
7
Quantum Nonlocality: How Does Nature Do It?
Entropy (Basel). 2024 Feb 23;26(3):191. doi: 10.3390/e26030191.
8
Synchronous Observation of Bell Nonlocality and State-Dependent Contextuality.
Phys Rev Lett. 2023 Jan 27;130(4):040201. doi: 10.1103/PhysRevLett.130.040201.
9
Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality.
Phys Rev Lett. 2014 Oct 17;113(16):160402. doi: 10.1103/PhysRevLett.113.160402. Epub 2014 Oct 14.
10
Bell inequalities for entangled qubits: quantitative tests of quantum character and nonlocality on quantum computers.
Phys Chem Chem Phys. 2021 Mar 21;23(11):6370-6387. doi: 10.1039/d0cp05444e. Epub 2021 Feb 4.

引用本文的文献

1
Problem of Existence of Joint Distribution on Quantum Logic.
Entropy (Basel). 2024 Dec 21;26(12):1121. doi: 10.3390/e26121121.
2
Quantum Nonlocality: How Does Nature Do It?
Entropy (Basel). 2024 Feb 23;26(3):191. doi: 10.3390/e26030191.
4
Contextuality, Complementarity, Signaling, and Bell Tests.
Entropy (Basel). 2022 Sep 28;24(10):1380. doi: 10.3390/e24101380.
5
Contextuality or Nonlocality: What Would John Bell Choose Today?
Entropy (Basel). 2023 Feb 2;25(2):280. doi: 10.3390/e25020280.
7
Assumption-Free Derivation of the Bell-Type Criteria of Contextuality/Nonlocality.
Entropy (Basel). 2021 Nov 19;23(11):1543. doi: 10.3390/e23111543.
10
Is the Devil in ?
Entropy (Basel). 2021 May 19;23(5):632. doi: 10.3390/e23050632.

本文引用的文献

1
Get Rid of Nonlocality from Quantum Physics.
Entropy (Basel). 2019 Aug 18;21(8):806. doi: 10.3390/e21080806.
3
Spooky predictions at a distance: reality, complementarity and contextuality in quantum theory.
Philos Trans A Math Phys Eng Sci. 2019 Nov 4;377(2157):20190089. doi: 10.1098/rsta.2019.0089. Epub 2019 Sep 16.
4
Quantum correlations in separable multi-mode states and in classically entangled light.
Rep Prog Phys. 2019 May;82(5):056001. doi: 10.1088/1361-6633/ab0c6b. Epub 2019 Mar 4.
5
Can we close the Bohr-Einstein quantum debate?
Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106). doi: 10.1098/rsta.2016.0392.
6
Quantum Bayesianism as the basis of general theory of decision-making.
Philos Trans A Math Phys Eng Sci. 2016 May 28;374(2068). doi: 10.1098/rsta.2015.0245.
7
Generalizing Tsirelson's bound on Bell inequalities using a min-max principle.
Phys Rev Lett. 2004 Sep 24;93(13):130407. doi: 10.1103/PhysRevLett.93.130407. Epub 2004 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验