Suppr超能文献

用于玻姆 - 贝尔型实验的经典(局部和上下文)概率模型:无信号传递即随机变量的独立性

Classical (Local and Contextual) Probability Model for Bohm-Bell Type Experiments: No-Signaling as Independence of Random Variables.

作者信息

Khrennikov Andrei, Alodjants Alexander

机构信息

Mechanics and Optics (ITMO) Department, National Research University for Information Technology, St. Petersburg 197101, Russia.

International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, SE-351 95 Växjö, Sweden.

出版信息

Entropy (Basel). 2019 Feb 8;21(2):157. doi: 10.3390/e21020157.

Abstract

We start with a review on classical probability representations of quantum states and observables. We show that the correlations of the observables involved in the Bohm-Bell type experiments can be expressed as correlations of classical random variables. The main part of the paper is devoted to the conditional probability model with conditioning on the selection of the pairs of experimental settings. From the viewpoint of quantum foundations, this is a Following the recent works of Dzhafarov and collaborators, we apply our conditional probability approach to characterize (no-)signaling. Consideration of the Bohm-Bell experimental scheme in the presence of signaling is important for applications outside quantum mechanics, e.g., in psychology and social science. The main message of this paper (rooted to Ballentine) is that quantum probabilities and more generally probabilities related to the Bohm-Bell type experiments (not only in physics, but also in psychology, sociology, game theory, economics, and finances) can be classically represented as conditional probabilities.

摘要

我们首先回顾量子态和可观测量的经典概率表示。我们表明,在玻姆 - 贝尔型实验中所涉及的可观测量的相关性可以表示为经典随机变量的相关性。本文的主要部分致力于以实验设置对的选择为条件的条件概率模型。从量子基础的观点来看,这是一个……遵循贾法罗夫及其合作者最近的工作,我们应用我们的条件概率方法来刻画(非)信号传递。考虑存在信号传递情况下的玻姆 - 贝尔实验方案对于量子力学之外的应用很重要,例如在心理学和社会科学中。本文的主要观点(源于巴伦廷)是量子概率以及更一般地与玻姆 - 贝尔型实验相关的概率(不仅在物理学中,而且在心理学、社会学、博弈论、经济学和金融领域)可以经典地表示为条件概率。

相似文献

4
Two Faced Janus of Quantum Nonlocality.量子非定域性的双面雅努斯
Entropy (Basel). 2020 Mar 6;22(3):303. doi: 10.3390/e22030303.
5
Get Rid of Nonlocality from Quantum Physics.消除量子物理学中的非定域性。
Entropy (Basel). 2019 Aug 18;21(8):806. doi: 10.3390/e21080806.
7
Quantum Nonlocality: How Does Nature Do It?量子非定域性:自然是如何做到的?
Entropy (Basel). 2024 Feb 23;26(3):191. doi: 10.3390/e26030191.
8
Quantum measurements and contextuality.量子测量与语境相关性。
Philos Trans A Math Phys Eng Sci. 2019 Nov 4;377(2157):20190033. doi: 10.1098/rsta.2019.0033. Epub 2019 Sep 16.
10
Contextual measurement model and quantum theory.情境测量模型与量子理论。
R Soc Open Sci. 2024 Mar 20;11(3):231953. doi: 10.1098/rsos.231953. eCollection 2024 Mar.

引用本文的文献

7
2021 Best Paper Award.2021年最佳论文奖。
Entropy (Basel). 2021 Jul 6;23(7):865. doi: 10.3390/e23070865.
8
Is the Devil in ?魔鬼在……里面吗?
Entropy (Basel). 2021 May 19;23(5):632. doi: 10.3390/e23050632.
9
Probability Representation of Quantum States.量子态的概率表示
Entropy (Basel). 2021 Apr 29;23(5):549. doi: 10.3390/e23050549.

本文引用的文献

1
Closing the Door on Quantum Nonlocality.关上量子非定域性的大门。
Entropy (Basel). 2018 Nov 15;20(11):877. doi: 10.3390/e20110877.
6
Challenging local realism with human choices.用人的选择来挑战局域实在论。
Nature. 2018 May;557(7704):212-216. doi: 10.1038/s41586-018-0085-3. Epub 2018 May 9.
7
Can we close the Bohr-Einstein quantum debate?我们能终结玻尔-爱因斯坦量子辩论吗?
Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106). doi: 10.1098/rsta.2016.0392.
8
On contextuality in behavioural data.关于行为数据中的情境性
Philos Trans A Math Phys Eng Sci. 2016 May 28;374(2068). doi: 10.1098/rsta.2015.0234.
9
Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests.用于无漏洞贝尔测试的新鲜且纯净随机数的生成。
Phys Rev Lett. 2015 Dec 18;115(25):250403. doi: 10.1103/PhysRevLett.115.250403. Epub 2015 Dec 16.
10
Strong Loophole-Free Test of Local Realism.局域实在论的强无漏洞检验
Phys Rev Lett. 2015 Dec 18;115(25):250402. doi: 10.1103/PhysRevLett.115.250402. Epub 2015 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验