Khrennikov Andrei, Alodjants Alexander
Mechanics and Optics (ITMO) Department, National Research University for Information Technology, St. Petersburg 197101, Russia.
International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, SE-351 95 Växjö, Sweden.
Entropy (Basel). 2019 Feb 8;21(2):157. doi: 10.3390/e21020157.
We start with a review on classical probability representations of quantum states and observables. We show that the correlations of the observables involved in the Bohm-Bell type experiments can be expressed as correlations of classical random variables. The main part of the paper is devoted to the conditional probability model with conditioning on the selection of the pairs of experimental settings. From the viewpoint of quantum foundations, this is a Following the recent works of Dzhafarov and collaborators, we apply our conditional probability approach to characterize (no-)signaling. Consideration of the Bohm-Bell experimental scheme in the presence of signaling is important for applications outside quantum mechanics, e.g., in psychology and social science. The main message of this paper (rooted to Ballentine) is that quantum probabilities and more generally probabilities related to the Bohm-Bell type experiments (not only in physics, but also in psychology, sociology, game theory, economics, and finances) can be classically represented as conditional probabilities.
我们首先回顾量子态和可观测量的经典概率表示。我们表明,在玻姆 - 贝尔型实验中所涉及的可观测量的相关性可以表示为经典随机变量的相关性。本文的主要部分致力于以实验设置对的选择为条件的条件概率模型。从量子基础的观点来看,这是一个……遵循贾法罗夫及其合作者最近的工作,我们应用我们的条件概率方法来刻画(非)信号传递。考虑存在信号传递情况下的玻姆 - 贝尔实验方案对于量子力学之外的应用很重要,例如在心理学和社会科学中。本文的主要观点(源于巴伦廷)是量子概率以及更一般地与玻姆 - 贝尔型实验相关的概率(不仅在物理学中,而且在心理学、社会学、博弈论、经济学和金融领域)可以经典地表示为条件概率。