Suppr超能文献

通道的确证与预测的确证:从医学检验到乌鸦悖论

Channels' Confirmation and Predictions' Confirmation: From the Medical Test to the Raven Paradox.

作者信息

Lu Chenguang

机构信息

Intelligence Engineering and Mathematics Institute, Liaoning Technical University, Fuxin 123000, China.

出版信息

Entropy (Basel). 2020 Mar 26;22(4):384. doi: 10.3390/e22040384.

Abstract

After long arguments between positivism and falsificationism, the verification of universal hypotheses was replaced with the confirmation of uncertain major premises. Unfortunately, Hemple proposed the Raven Paradox. Then, Carnap used the increment of logical probability as the confirmation measure. So far, many confirmation measures have been proposed. Measure proposed by Kemeny and Oppenheim among them possesses symmetries and asymmetries proposed by Elles and Fitelson, monotonicity proposed by Greco et al., and normalizing property suggested by many researchers. Based on the semantic information theory, a measure * similar to is derived from the medical test. Like the likelihood ratio, measures * and can only indicate the quality of channels or the testing means instead of the quality of probability predictions. Furthermore, it is still not easy to use *, , or another measure to clarify the Raven Paradox. For this reason, measure * similar to the correct rate is derived. Measure * supports the Nicod Criterion and undermines the Equivalence Condition, and hence, can be used to eliminate the Raven Paradox. An example indicates that measures and * are helpful for diagnosing the infection of Novel Coronavirus, whereas most popular confirmation measures are not. Another example reveals that all popular confirmation measures cannot be used to explain that a black raven can confirm "Ravens are black" more strongly than a piece of chalk. Measures , *, and * indicate that the existence of fewer counterexamples is more important than more positive examples' existence, and hence, are compatible with Popper's falsification thought.

摘要

在实证主义和证伪主义经过长期争论之后,全称假设的证实被不确定大前提的确证所取代。不幸的是,亨普尔提出了乌鸦悖论。随后,卡尔纳普将逻辑概率的增量用作确证度量。到目前为止,已经提出了许多确证度量。其中凯梅尼和奥本海姆提出的度量 具有埃利斯和菲特尔森提出的对称性和不对称性、格雷科等人提出的单调性以及许多研究者提出的归一化性质。基于语义信息理论,从医学检验中导出了一种与 类似的度量 *。与似然比一样,度量 * 和 只能表明渠道或检验手段的质量,而不是概率预测的质量。此外,使用 *、 或其他度量来澄清乌鸦悖论仍然不容易。因此,导出了类似于正确率的度量 。度量 * 支持尼科德标准并削弱了等价条件,因此可用于消除乌鸦悖论。一个例子表明,度量 和 * 有助于诊断新型冠状病毒感染,而大多数流行的确证度量则不然。另一个例子表明,所有流行的确证度量都无法解释一只黑乌鸦比一支粉笔更能有力地确证“乌鸦是黑色的”。度量 、 和 * 表明,较少反例的存在比较多正例的存在更重要,因此与波普尔的证伪思想相符。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c006/7516858/1980198338a7/entropy-22-00384-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验