Mostafazadeh Ali
Departments of Mathematics and Physics, Koç University, Sarıyer, 34450 Istanbul, Turkey.
Entropy (Basel). 2020 Apr 20;22(4):471. doi: 10.3390/e22040471.
A non-Hermitian operator defined in a Hilbert space with inner product 〈 · | · 〉 may serve as the Hamiltonian for a unitary quantum system if it is η -pseudo-Hermitian for a metric operator (positive-definite automorphism) η . The latter defines the inner product 〈 · | η · 〉 of the physical Hilbert space H η of the system. For situations where some of the eigenstates of depend on time, η becomes time-dependent. Therefore, the system has a non-stationary Hilbert space. Such quantum systems, which are also encountered in the study of quantum mechanics in cosmological backgrounds, suffer from a conflict between the unitarity of time evolution and the unobservability of the Hamiltonian. Their proper treatment requires a geometric framework which clarifies the notion of the energy observable and leads to a geometric extension of quantum mechanics (GEQM). We provide a general introduction to the subject, review some of the recent developments, offer a straightforward description of the Heisenberg-picture formulation of the dynamics for quantum systems having a time-dependent Hilbert space, and outline the Heisenberg-picture formulation of dynamics in GEQM.
在具有内积〈·|·〉的希尔伯特空间中定义的非厄米算符,如果对于度规算符(正定自同构)η 是 η - 伪厄米的,那么它可以作为酉量子系统的哈密顿量。后者定义了系统物理希尔伯特空间 H η 的内积〈·|η·〉。对于 的一些本征态依赖于时间的情况,η 变得与时间相关。因此,该系统具有非定常希尔伯特空间。这种量子系统在宇宙学背景下的量子力学研究中也会遇到,它们在时间演化的幺正性与哈密顿量的不可观测性之间存在冲突。对它们的恰当处理需要一个几何框架,该框架能阐明能量可观测量的概念,并导致量子力学的几何扩展(GEQM)。我们对该主题进行了一般性介绍,回顾了一些近期的发展,对具有与时间相关的希尔伯特空间的量子系统的动力学在海森堡绘景中的表述给出了直接描述,并概述了 GEQM 中动力学的海森堡绘景表述。