Suppr超能文献

李群上同调与(多)辛积分器:基于苏里奥几何统计力学的李群机器学习新几何工具。

Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics.

作者信息

Barbaresco Frédéric, Gay-Balmaz François

机构信息

Key Technology Domain PCC (Processing, Control & Cognition) Representative, Thales Land & Air Systems, Voie Pierre-Gilles de Gennes, F91470 Limours, France.

Centre National de la Recherche Scientifique (CNRS), Le Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, 75005 Paris, France.

出版信息

Entropy (Basel). 2020 Apr 25;22(5):498. doi: 10.3390/e22050498.

Abstract

In this paper, we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau's symplectic model of statistical mechanics, its polysymplectic extension, Koszul model, and approaches developed in quantum information geometry. We emphasize the role of equivariance with respect to Lie group actions and the role of several concepts from geometric mechanics, such as momentum maps, Casimir functions, coadjoint orbits, and Lie-Poisson brackets with cocycles, as unifying structures appearing in various applications of this framework to information geometry and machine learning. For instance, we discuss the expression of the Fisher metric in presence of equivariance and we exploit the property of the entropy of the Souriau model as a Casimir function to apply a geometric model for energy preserving entropy production. We illustrate this framework with several examples including multivariate Gaussian probability densities, and the Bogoliubov-Kubo-Mori metric as a quantum version of the Fisher metric for quantum information on coadjoint orbits. We exploit this geometric setting and Lie group equivariance to present symplectic and multisymplectic variational Lie group integration schemes for some of the equations associated with Souriau symplectic and polysymplectic models, such as the Lie-Poisson equation with cocycle.

摘要

在本文中,我们描述并利用了一个用于吉布斯概率密度及统计力学中相关概念的几何框架,该框架统一了此前关于该主题的若干工作,包括苏里奥的统计力学辛模型、其多辛扩展、科祖尔模型以及量子信息几何中发展出的方法。我们强调了关于李群作用的等变性的作用,以及几何力学中几个概念的作用,比如动量映射、卡西米尔函数、余伴随轨道以及带有上循环的李 - 泊松括号,它们作为统一结构出现在该框架在信息几何和机器学习的各种应用中。例如,我们讨论了在等变性存在的情况下费希尔度量的表达式,并利用苏里奥模型的熵作为卡西米尔函数的性质来应用一个用于能量守恒熵产生的几何模型。我们用几个例子来说明这个框架,包括多元高斯概率密度,以及作为余伴随轨道上量子信息的费希尔度量的量子版本的博戈柳博夫 - 久保 - 森度量。我们利用这个几何设定和李群等变性,为一些与苏里奥辛模型和多辛模型相关的方程,比如带有上循环的李 - 泊松方程,给出辛和多辛变分李群积分方案。

相似文献

5
Stochastic discrete Hamiltonian variational integrators.随机离散哈密顿变分积分器。
BIT Numer Math. 2018;58(4):1009-1048. doi: 10.1007/s10543-018-0720-2. Epub 2018 Aug 16.
10
Noise and Dissipation on Coadjoint Orbits.余伴随轨道上的噪声与耗散
J Nonlinear Sci. 2018;28(1):91-145. doi: 10.1007/s00332-017-9404-3. Epub 2017 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验