Li Ang, Pericchi Luis, Wang Kun
Río Piedras Campus, University of Puerto Rico, 00925 San Juan, Puerto Rico.
Entropy (Basel). 2020 Apr 30;22(5):513. doi: 10.3390/e22050513.
There is not much literature on objective Bayesian analysis for binary classification problems, especially for intrinsic prior related methods. On the other hand, variational inference methods have been employed to solve classification problems using probit regression and logistic regression with normal priors. In this article, we propose to apply the variational approximation on probit regression models with intrinsic prior. We review the mean-field variational method and the procedure of developing intrinsic prior for the probit regression model. We then present our work on implementing the variational Bayesian probit regression model using intrinsic prior. Publicly available data from the world's largest peer-to-peer lending platform, LendingClub, will be used to illustrate how model output uncertainties are addressed through the framework we proposed. With LendingClub data, the target variable is the final status of a loan, either charged-off or fully paid. Investors may very well be interested in how predictive features like FICO, amount financed, income, etc. may affect the final loan status.
关于二元分类问题的客观贝叶斯分析,尤其是与内在先验相关的方法,相关文献并不多。另一方面,变分推理方法已被用于通过具有正态先验的概率单位回归和逻辑回归来解决分类问题。在本文中,我们建议将变分近似应用于具有内在先验的概率单位回归模型。我们回顾了平均场变分方法以及为概率单位回归模型开发内在先验的过程。然后,我们展示了使用内在先验实现变分贝叶斯概率单位回归模型的工作。来自全球最大的点对点借贷平台LendingClub的公开可用数据将用于说明如何通过我们提出的框架来处理模型输出的不确定性。对于LendingClub数据,目标变量是贷款的最终状态,即已核销或已全额偿还。投资者很可能会对诸如FICO、融资金额、收入等预测特征如何影响最终贷款状态感兴趣。