Suppr超能文献

变分推理的进展

Advances in Variational Inference.

作者信息

Zhang Cheng, Butepage Judith, Kjellstrom Hedvig, Mandt Stephan

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):2008-2026. doi: 10.1109/TPAMI.2018.2889774. Epub 2018 Dec 25.

Abstract

Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully applied to various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions.

摘要

许多现代无监督或半监督机器学习算法都依赖于贝叶斯概率模型。这些模型通常难以处理,因此需要近似推断。变分推断(VI)通过解决一个优化问题,让我们用一个更简单的变分分布来近似高维贝叶斯后验。这种方法已成功应用于各种模型和大规模应用中。在这篇综述中,我们概述了变分推断的最新趋势。我们首先介绍标准的平均场变分推断,然后回顾近期在以下几个方面的进展:(a)可扩展变分推断,包括随机近似;(b)通用变分推断,它将变分推断的适用性扩展到一大类原本难以处理的模型,如非共轭模型;(c)精确变分推断,包括超出平均场近似或具有非典型散度的变分模型;(d)摊销变分推断,它使用推断网络对局部潜在变量进行推断。最后,我们总结了有前景的未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验