Fu Zufeng, Xu Daoyun
College of Computer Science and Technology, Guizhou University, Guiyang 550025, China.
Department of Electronics and Information Engineering, Anshun University, Anshun 561000, China.
Entropy (Basel). 2020 May 19;22(5):569. doi: 10.3390/e22050569.
Unique -SAT is the promised version of -SAT where the given formula has 0 or 1 solution and is proved to be as difficult as the general -SAT. For any k ≥ 3 , s ≥ f ( k , d ) and ( s + d ) / 2 > k - 1 , a parsimonious reduction from -CNF to -regular (,)-CNF is given. Here regular (,)-CNF is a subclass of CNF, where each clause of the formula has exactly distinct variables, and each variable occurs in exactly clauses. A -regular (,)-CNF formula is a regular (,)-CNF formula, in which the absolute value of the difference between positive and negative occurrences of every variable is at most a nonnegative integer . We prove that for all k ≥ 3 , f ( k , d ) ≤ u ( k , d ) + 1 and f ( k , d + 1 ) ≤ u ( k , d ) . The critical function f ( k , d ) is the maximal value of , such that every -regular (,)-CNF formula is satisfiable. In this study, u ( k , d ) denotes the minimal value of such that there exists a uniquely satisfiable -regular (,)-CNF formula. We further show that for s ≥ f ( k , d ) + 1 and ( s + d ) / 2 > k - 1 , there exists a uniquely satisfiable -regular ( k , s + 1 ) -CNF formula. Moreover, for k ≥ 7 , we have that u ( k , d ) ≤ f ( k , d ) + 1 .
唯一可满足性(Unique -SAT)是 -SAT 的一种特殊情况,其中给定的公式有 0 个或 1 个解,并且已被证明与一般的 -SAT 一样困难。对于任何 k ≥ 3,s ≥ f(k, d) 且 (s + d) / 2 > k - 1,给出了从 -CNF 到 -正则(,)-CNF 的简约归约。这里正则(,)-CNF 是 CNF 的一个子类,其中公式的每个子句恰好有 个不同的变量,并且每个变量恰好出现在 个子句中。一个 -正则(,)-CNF 公式是一个正则(,)-CNF 公式,其中每个变量的正出现次数与负出现次数之差的绝对值至多为一个非负整数 。我们证明对于所有 k ≥ 3,f(k, d) ≤ u(k, d) + 1 且 f(k, d + 1) ≤ u(k, d)。临界函数 f(k, d) 是 的最大值,使得每个 -正则(,)-CNF 公式都是可满足的。在本研究中,u(k, d) 表示使得存在唯一可满足的 -正则(,)-CNF 公式的 的最小值。我们进一步表明,对于 s ≥ f(k, d) + 1 且 (s + d) / 2 > k - 1,存在唯一可满足的 -正则(k, s + 1)-CNF 公式。此外,对于 k ≥ 7,我们有 u(k, d) ≤ f(k, d) + 1。