Suppr超能文献

唯一可满足的正则(,) - 可满足性实例

Uniquely Satisfiable -Regular (,)-SAT Instances.

作者信息

Fu Zufeng, Xu Daoyun

机构信息

College of Computer Science and Technology, Guizhou University, Guiyang 550025, China.

Department of Electronics and Information Engineering, Anshun University, Anshun 561000, China.

出版信息

Entropy (Basel). 2020 May 19;22(5):569. doi: 10.3390/e22050569.

Abstract

Unique -SAT is the promised version of -SAT where the given formula has 0 or 1 solution and is proved to be as difficult as the general -SAT. For any k ≥ 3 , s ≥ f ( k , d ) and ( s + d ) / 2 > k - 1 , a parsimonious reduction from -CNF to -regular (,)-CNF is given. Here regular (,)-CNF is a subclass of CNF, where each clause of the formula has exactly distinct variables, and each variable occurs in exactly clauses. A -regular (,)-CNF formula is a regular (,)-CNF formula, in which the absolute value of the difference between positive and negative occurrences of every variable is at most a nonnegative integer . We prove that for all k ≥ 3 , f ( k , d ) ≤ u ( k , d ) + 1 and f ( k , d + 1 ) ≤ u ( k , d ) . The critical function f ( k , d ) is the maximal value of , such that every -regular (,)-CNF formula is satisfiable. In this study, u ( k , d ) denotes the minimal value of such that there exists a uniquely satisfiable -regular (,)-CNF formula. We further show that for s ≥ f ( k , d ) + 1 and ( s + d ) / 2 > k - 1 , there exists a uniquely satisfiable -regular ( k , s + 1 ) -CNF formula. Moreover, for k ≥ 7 , we have that u ( k , d ) ≤ f ( k , d ) + 1 .

摘要

唯一可满足性(Unique -SAT)是 -SAT 的一种特殊情况,其中给定的公式有 0 个或 1 个解,并且已被证明与一般的 -SAT 一样困难。对于任何 k ≥ 3,s ≥ f(k, d) 且 (s + d) / 2 > k - 1,给出了从 -CNF 到 -正则(,)-CNF 的简约归约。这里正则(,)-CNF 是 CNF 的一个子类,其中公式的每个子句恰好有 个不同的变量,并且每个变量恰好出现在 个子句中。一个 -正则(,)-CNF 公式是一个正则(,)-CNF 公式,其中每个变量的正出现次数与负出现次数之差的绝对值至多为一个非负整数 。我们证明对于所有 k ≥ 3,f(k, d) ≤ u(k, d) + 1 且 f(k, d + 1) ≤ u(k, d)。临界函数 f(k, d) 是 的最大值,使得每个 -正则(,)-CNF 公式都是可满足的。在本研究中,u(k, d) 表示使得存在唯一可满足的 -正则(,)-CNF 公式的 的最小值。我们进一步表明,对于 s ≥ f(k, d) + 1 且 (s + d) / 2 > k - 1,存在唯一可满足的 -正则(k, s + 1)-CNF 公式。此外,对于 k ≥ 7,我们有 u(k, d) ≤ f(k, d) + 1。

相似文献

1
Uniquely Satisfiable -Regular (,)-SAT Instances.
Entropy (Basel). 2020 May 19;22(5):569. doi: 10.3390/e22050569.
2
(1,0)-Super Solutions of (,)-CNF Formula.
Entropy (Basel). 2020 Feb 23;22(2):253. doi: 10.3390/e22020253.
4
Scalability of the surface-based DNA algorithm for 3-SAT.
Biosystems. 2006 Aug;85(2):95-8. doi: 10.1016/j.biosystems.2005.12.002. Epub 2006 Jan 19.
5
Phase transitions of the typical algorithmic complexity of the random satisfiability problem studied with linear programming.
PLoS One. 2019 Apr 19;14(4):e0215309. doi: 10.1371/journal.pone.0215309. eCollection 2019.
6
A simplifier for propositional formulas with many binary clauses.
IEEE Trans Syst Man Cybern B Cybern. 2004 Feb;34(1):52-9. doi: 10.1109/tsmcb.2002.805807.
7
The Impact of Entropy and Solution Density on Selected SAT Heuristics.
Entropy (Basel). 2018 Sep 17;20(9):713. doi: 10.3390/e20090713.
8
Balanced K-satisfiability and biased random K-satisfiability on trees.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042130. doi: 10.1103/PhysRevE.87.042130.
9
Quantum tunneling and quantum walks as algorithmic resources to solve hard K-SAT instances.
Sci Rep. 2021 Aug 19;11(1):16845. doi: 10.1038/s41598-021-95801-1.
10

本文引用的文献

1
(1,0)-Super Solutions of (,)-CNF Formula.
Entropy (Basel). 2020 Feb 23;22(2):253. doi: 10.3390/e22020253.
2
Critical behavior in the satisfiability of random boolean expressions.
Science. 1994 May 27;264(5163):1297-301. doi: 10.1126/science.264.5163.1297.
3
Analytic and algorithmic solution of random satisfiability problems.
Science. 2002 Aug 2;297(5582):812-5. doi: 10.1126/science.1073287. Epub 2002 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验