Suppr超能文献

一种用于高维数据基于离散化的特征选择的协同进化方法。

A Cooperative Coevolutionary Approach to Discretization-Based Feature Selection for High-Dimensional Data.

作者信息

Zhou Yu, Kang Junhao, Zhang Xiao

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.

College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China.

出版信息

Entropy (Basel). 2020 Jun 1;22(6):613. doi: 10.3390/e22060613.

Abstract

Recent discretization-based feature selection methods show great advantages by introducing the entropy-based cut-points for features to integrate discretization and feature selection into one stage for high-dimensional data. However, current methods usually consider the individual features independently, ignoring the interaction between features with cut-points and those without cut-points, which results in information loss. In this paper, we propose a cooperative coevolutionary algorithm based on the genetic algorithm (GA) and particle swarm optimization (PSO), which searches for the feature subsets with and without entropy-based cut-points simultaneously. For the features with cut-points, a ranking mechanism is used to control the probability of mutation and crossover in GA. In addition, a binary-coded PSO is applied to update the indices of the selected features without cut-points. Experimental results on 10 real datasets verify the effectiveness of our algorithm in classification accuracy compared with several state-of-the-art competitors.

摘要

最近基于离散化的特征选择方法通过引入基于熵的特征切点,将离散化和特征选择集成到一个阶段来处理高维数据,显示出巨大优势。然而,当前方法通常独立考虑单个特征,忽略了有切点特征和无切点特征之间的相互作用,从而导致信息丢失。在本文中,我们提出了一种基于遗传算法(GA)和粒子群优化(PSO)的协同进化算法,该算法同时搜索有和没有基于熵切点的特征子集。对于有切点的特征,使用一种排序机制来控制遗传算法中变异和交叉的概率。此外,应用二进制编码的粒子群优化来更新所选无切点特征的索引。在10个真实数据集上的实验结果验证了我们的算法与几个最先进的竞争对手相比在分类准确率方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf83/7517144/29edba7111ea/entropy-22-00613-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验