Suppr超能文献

利用部分互信息和澳大利亚股票市场数据构建股票网络

Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data.

作者信息

Yan Yan, Wu Boyao, Tian Tianhai, Zhang Hu

机构信息

School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China.

School of Mathematics, Monash University, Melbourne, VIC 3800, Australia.

出版信息

Entropy (Basel). 2020 Jul 15;22(7):773. doi: 10.3390/e22070773.

Abstract

Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory.

摘要

复杂网络是从各类大数据中发现重要信息的有力工具。尽管针对股票关系网络的发展已经开展了大量研究,但相关系数主要用于衡量股票对之间的关系。对于这个重要主题,信息论的讨论要少得多,尽管互信息能够衡量非线性成对关系。在这项工作中,我们建议使用部分互信息来构建股票网络。路径一致性算法用于滤除冗余关系。利用澳大利亚股票市场数据,我们使用不同阶数的部分互信息构建了四个股票关系网络。与广泛使用的平面最大过滤图(PMFG)相比,我们能够生成具有大尺寸团块的网络。此外,大团块与产业部门的结构一致。我们还分析了生成网络的连通性和度分布。分析结果表明,所提出的方法是一种利用信息论构建股票关系网络的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b982/7517323/99e761195043/entropy-22-00773-g001.jpg

相似文献

1
Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data.
Entropy (Basel). 2020 Jul 15;22(7):773. doi: 10.3390/e22070773.
2
Development of stock correlation networks using mutual information and financial big data.
PLoS One. 2018 Apr 18;13(4):e0195941. doi: 10.1371/journal.pone.0195941. eCollection 2018.
3
The Linear Relationship Model with LASSO for Studying Stock Networks.
Entropy (Basel). 2022 Jun 9;24(6):808. doi: 10.3390/e24060808.
4
Hierarchies in communities of UK stock market from the perspective of Brexit.
J Appl Stat. 2020 Jul 24;48(13-15):2607-2625. doi: 10.1080/02664763.2020.1796942. eCollection 2021.
5
A graph-based approach to multi-source heterogeneous information fusion in stock market.
PLoS One. 2022 Aug 11;17(8):e0272083. doi: 10.1371/journal.pone.0272083. eCollection 2022.
6
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.
7
Effect of network size on comparing different stock networks.
PLoS One. 2023 Dec 14;18(12):e0288733. doi: 10.1371/journal.pone.0288733. eCollection 2023.
9
Predicting stock market movements using network science: an information theoretic approach.
Appl Netw Sci. 2017;2(1):35. doi: 10.1007/s41109-017-0055-y. Epub 2017 Oct 10.
10
Networks in financial markets based on the mutual information rate.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052801. doi: 10.1103/PhysRevE.89.052801. Epub 2014 May 1.

引用本文的文献

1
Analyzing crises in global financial indices using Recurrent Neural Network based Autoencoder.
PLoS One. 2025 Jul 14;20(7):e0326947. doi: 10.1371/journal.pone.0326947. eCollection 2025.
2
Global motion filtered nonlinear mutual information analysis: Enhancing dynamic portfolio strategies.
PLoS One. 2024 Jul 11;19(7):e0303707. doi: 10.1371/journal.pone.0303707. eCollection 2024.
4
5
The Linear Relationship Model with LASSO for Studying Stock Networks.
Entropy (Basel). 2022 Jun 9;24(6):808. doi: 10.3390/e24060808.
6
Inference of Molecular Regulatory Systems Using Statistical Path-Consistency Algorithm.
Entropy (Basel). 2022 May 13;24(5):693. doi: 10.3390/e24050693.
8
Structure and dynamics of financial networks by feature ranking method.
Sci Rep. 2021 Sep 2;11(1):17618. doi: 10.1038/s41598-021-97100-1.
10
Risk spillover networks in financial system based on information theory.
PLoS One. 2021 Jun 18;16(6):e0252601. doi: 10.1371/journal.pone.0252601. eCollection 2021.

本文引用的文献

1
Mutual Information as a General Measure of Structure in Interaction Networks.
Entropy (Basel). 2020 May 7;22(5):528. doi: 10.3390/e22050528.
4
Rare and everywhere: Perspectives on scale-free networks.
Nat Commun. 2019 Mar 4;10(1):1016. doi: 10.1038/s41467-019-09038-8.
5
Next-Generation Machine Learning for Biological Networks.
Cell. 2018 Jun 14;173(7):1581-1592. doi: 10.1016/j.cell.2018.05.015. Epub 2018 Jun 7.
6
Development of stock correlation networks using mutual information and financial big data.
PLoS One. 2018 Apr 18;13(4):e0195941. doi: 10.1371/journal.pone.0195941. eCollection 2018.
7
Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy.
Phys Rev Lett. 2017 Nov 10;119(19):198301. doi: 10.1103/PhysRevLett.119.198301. Epub 2017 Nov 7.
9
NETWORK ANALYSIS. Network analytics in the age of big data.
Science. 2016 Jul 8;353(6295):123-4. doi: 10.1126/science.aah3449.
10
Part mutual information for quantifying direct associations in networks.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5130-5. doi: 10.1073/pnas.1522586113. Epub 2016 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验