Suppr超能文献

用于量化网络中直接关联的部分互信息。

Part mutual information for quantifying direct associations in networks.

作者信息

Zhao Juan, Zhou Yiwei, Zhang Xiujun, Chen Luonan

机构信息

Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China;

Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China;

出版信息

Proc Natl Acad Sci U S A. 2016 May 3;113(18):5130-5. doi: 10.1073/pnas.1522586113. Epub 2016 Apr 18.

Abstract

Quantitatively identifying direct dependencies between variables is an important task in data analysis, in particular for reconstructing various types of networks and causal relations in science and engineering. One of the most widely used criteria is partial correlation, but it can only measure linearly direct association and miss nonlinear associations. However, based on conditional independence, conditional mutual information (CMI) is able to quantify nonlinearly direct relationships among variables from the observed data, superior to linear measures, but suffers from a serious problem of underestimation, in particular for those variables with tight associations in a network, which severely limits its applications. In this work, we propose a new concept, "partial independence," with a new measure, "part mutual information" (PMI), which not only can overcome the problem of CMI but also retains the quantification properties of both mutual information (MI) and CMI. Specifically, we first defined PMI to measure nonlinearly direct dependencies between variables and then derived its relations with MI and CMI. Finally, we used a number of simulated data as benchmark examples to numerically demonstrate PMI features and further real gene expression data from Escherichia coli and yeast to reconstruct gene regulatory networks, which all validated the advantages of PMI for accurately quantifying nonlinearly direct associations in networks.

摘要

定量识别变量之间的直接依赖关系是数据分析中的一项重要任务,特别是在科学和工程领域重建各种类型的网络和因果关系时。最广泛使用的标准之一是偏相关,但它只能测量线性直接关联,而会遗漏非线性关联。然而,基于条件独立性,条件互信息(CMI)能够从观测数据中量化变量之间的非线性直接关系,优于线性度量,但存在严重的低估问题,特别是对于网络中具有紧密关联的那些变量,这严重限制了其应用。在这项工作中,我们提出了一个新的概念“部分独立性”,以及一种新的度量“部分互信息”(PMI),它不仅可以克服CMI的问题,还保留了互信息(MI)和CMI的量化特性。具体而言,我们首先定义了PMI来测量变量之间的非线性直接依赖关系,然后推导了它与MI和CMI的关系。最后,我们使用了一些模拟数据作为基准示例,从数值上展示了PMI的特征,并进一步使用来自大肠杆菌和酵母的真实基因表达数据来重建基因调控网络,所有这些都验证了PMI在准确量化网络中非线性直接关联方面的优势。

相似文献

1
Part mutual information for quantifying direct associations in networks.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5130-5. doi: 10.1073/pnas.1522586113. Epub 2016 Apr 18.
2
Quantifying Direct Dependencies in Biological Networks by Multiscale Association Analysis.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Mar-Apr;17(2):449-458. doi: 10.1109/TCBB.2018.2846648. Epub 2018 Jun 12.
3
Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks.
Nucleic Acids Res. 2015 Mar 11;43(5):e31. doi: 10.1093/nar/gku1315. Epub 2014 Dec 24.
4
Multiscale part mutual information for quantifying nonlinear direct associations in networks.
Bioinformatics. 2021 Sep 29;37(18):2920-2929. doi: 10.1093/bioinformatics/btab182.
5
Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information.
Bioinformatics. 2012 Jan 1;28(1):98-104. doi: 10.1093/bioinformatics/btr626. Epub 2011 Nov 15.
6
Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.
PLoS One. 2016 May 12;11(5):e0154953. doi: 10.1371/journal.pone.0154953. eCollection 2016.
7
Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data.
Bioinformatics. 2007 Jul 1;23(13):1640-7. doi: 10.1093/bioinformatics/btm163. Epub 2007 May 7.
9
Low-order conditional independence graphs for inferring genetic networks.
Stat Appl Genet Mol Biol. 2006;5:Article1. doi: 10.2202/1544-6115.1170. Epub 2006 Jan 4.

引用本文的文献

1
Quantifying direct associations between variables.
Fundam Res. 2023 Aug 10;5(4):1538-1546. doi: 10.1016/j.fmre.2023.06.012. eCollection 2025 Jul.
2
Double optimal transport for differential gene regulatory network inference with unpaired samples.
Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf352.
3
PGBTR: a powerful and general method for inferring bacterial transcriptional regulatory networks.
BMC Genomics. 2025 Aug 1;26(1):712. doi: 10.1186/s12864-025-11863-9.
6
AJGM: joint learning of heterogeneous gene networks with adaptive graphical model.
Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf096.
7
WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.
Front Genet. 2025 Feb 17;16:1553352. doi: 10.3389/fgene.2025.1553352. eCollection 2025.
9
Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods.
Bioinform Biol Insights. 2024 Nov 4;18:11779322241287120. doi: 10.1177/11779322241287120. eCollection 2024.
10
eMCI: An Explainable Multimodal Correlation Integration Model for Unveiling Spatial Transcriptomics and Intercellular Signaling.
Research (Wash D C). 2024 Nov 1;7:0522. doi: 10.34133/research.0522. eCollection 2024.

本文引用的文献

1
Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks.
Nucleic Acids Res. 2015 Mar 11;43(5):e31. doi: 10.1093/nar/gku1315. Epub 2014 Dec 24.
2
Gene coexpression measures in large heterogeneous samples using count statistics.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16371-6. doi: 10.1073/pnas.1417128111. Epub 2014 Oct 6.
3
Equitability, mutual information, and the maximal information coefficient.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3354-9. doi: 10.1073/pnas.1309933111. Epub 2014 Feb 18.
4
Network cleanup.
Nat Biotechnol. 2013 Aug;31(8):714-5. doi: 10.1038/nbt.2657.
5
Network deconvolution as a general method to distinguish direct dependencies in networks.
Nat Biotechnol. 2013 Aug;31(8):726-33. doi: 10.1038/nbt.2635. Epub 2013 Jul 14.
6
Network link prediction by global silencing of indirect correlations.
Nat Biotechnol. 2013 Aug;31(8):720-5. doi: 10.1038/nbt.2601. Epub 2013 Jul 14.
7
Detecting novel associations in large data sets.
Science. 2011 Dec 16;334(6062):1518-24. doi: 10.1126/science.1205438.
8
Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information.
Bioinformatics. 2012 Jan 1;28(1):98-104. doi: 10.1093/bioinformatics/btr626. Epub 2011 Nov 15.
9
GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods.
Bioinformatics. 2011 Aug 15;27(16):2263-70. doi: 10.1093/bioinformatics/btr373. Epub 2011 Jun 22.
10
On Brownian Distance Covariance and High Dimensional Data.
Ann Appl Stat. 2009 Jan 1;3(4):1266-1269. doi: 10.1214/09-AOAS312.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验