Suppr超能文献

用于量化网络中直接关联的部分互信息。

Part mutual information for quantifying direct associations in networks.

作者信息

Zhao Juan, Zhou Yiwei, Zhang Xiujun, Chen Luonan

机构信息

Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China;

Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China;

出版信息

Proc Natl Acad Sci U S A. 2016 May 3;113(18):5130-5. doi: 10.1073/pnas.1522586113. Epub 2016 Apr 18.

Abstract

Quantitatively identifying direct dependencies between variables is an important task in data analysis, in particular for reconstructing various types of networks and causal relations in science and engineering. One of the most widely used criteria is partial correlation, but it can only measure linearly direct association and miss nonlinear associations. However, based on conditional independence, conditional mutual information (CMI) is able to quantify nonlinearly direct relationships among variables from the observed data, superior to linear measures, but suffers from a serious problem of underestimation, in particular for those variables with tight associations in a network, which severely limits its applications. In this work, we propose a new concept, "partial independence," with a new measure, "part mutual information" (PMI), which not only can overcome the problem of CMI but also retains the quantification properties of both mutual information (MI) and CMI. Specifically, we first defined PMI to measure nonlinearly direct dependencies between variables and then derived its relations with MI and CMI. Finally, we used a number of simulated data as benchmark examples to numerically demonstrate PMI features and further real gene expression data from Escherichia coli and yeast to reconstruct gene regulatory networks, which all validated the advantages of PMI for accurately quantifying nonlinearly direct associations in networks.

摘要

定量识别变量之间的直接依赖关系是数据分析中的一项重要任务,特别是在科学和工程领域重建各种类型的网络和因果关系时。最广泛使用的标准之一是偏相关,但它只能测量线性直接关联,而会遗漏非线性关联。然而,基于条件独立性,条件互信息(CMI)能够从观测数据中量化变量之间的非线性直接关系,优于线性度量,但存在严重的低估问题,特别是对于网络中具有紧密关联的那些变量,这严重限制了其应用。在这项工作中,我们提出了一个新的概念“部分独立性”,以及一种新的度量“部分互信息”(PMI),它不仅可以克服CMI的问题,还保留了互信息(MI)和CMI的量化特性。具体而言,我们首先定义了PMI来测量变量之间的非线性直接依赖关系,然后推导了它与MI和CMI的关系。最后,我们使用了一些模拟数据作为基准示例,从数值上展示了PMI的特征,并进一步使用来自大肠杆菌和酵母的真实基因表达数据来重建基因调控网络,所有这些都验证了PMI在准确量化网络中非线性直接关联方面的优势。

相似文献

1
Part mutual information for quantifying direct associations in networks.用于量化网络中直接关联的部分互信息。
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5130-5. doi: 10.1073/pnas.1522586113. Epub 2016 Apr 18.
2
Quantifying Direct Dependencies in Biological Networks by Multiscale Association Analysis.通过多尺度关联分析量化生物网络中的直接依赖关系。
IEEE/ACM Trans Comput Biol Bioinform. 2020 Mar-Apr;17(2):449-458. doi: 10.1109/TCBB.2018.2846648. Epub 2018 Jun 12.
9
Low-order conditional independence graphs for inferring genetic networks.用于推断遗传网络的低阶条件独立图。
Stat Appl Genet Mol Biol. 2006;5:Article1. doi: 10.2202/1544-6115.1170. Epub 2006 Jan 4.

引用本文的文献

1
Quantifying direct associations between variables.量化变量之间的直接关联。
Fundam Res. 2023 Aug 10;5(4):1538-1546. doi: 10.1016/j.fmre.2023.06.012. eCollection 2025 Jul.
9
Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods.单细胞基因调控网络方法的基准测试方法
Bioinform Biol Insights. 2024 Nov 4;18:11779322241287120. doi: 10.1177/11779322241287120. eCollection 2024.

本文引用的文献

3
Equitability, mutual information, and the maximal information coefficient.公平性、互信息和最大信息系数。
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3354-9. doi: 10.1073/pnas.1309933111. Epub 2014 Feb 18.
4
Network cleanup.网络清理。
Nat Biotechnol. 2013 Aug;31(8):714-5. doi: 10.1038/nbt.2657.
7
Detecting novel associations in large data sets.在大型数据集 中检测新的关联。
Science. 2011 Dec 16;334(6062):1518-24. doi: 10.1126/science.1205438.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验