Bień-Barkowska Katarzyna
Institute of Econometrics, Warsaw School of Economics, Madalińskiego 6/8, 02-513 Warsaw, Poland.
Entropy (Basel). 2020 Jul 20;22(7):789. doi: 10.3390/e22070789.
Forecasting market risk lies at the core of modern empirical finance. We propose a new self-exciting probability peaks-over-threshold (SEP-POT) model for forecasting the extreme loss probability and the value at risk. The model draws from the point-process approach to the POT methodology but is built under a discrete-time framework. Thus, time is treated as an integer value and the days of extreme loss could occur upon a sequence of indivisible time units. The SEP-POT model can capture the self-exciting nature of extreme event arrival, and hence, the strong clustering of large drops in financial prices. The triggering effect of recent events on the probability of extreme losses is specified using a discrete weighting function based on the at-zero-truncated Negative Binomial (NegBin) distribution. The serial correlation in the magnitudes of extreme losses is also taken into consideration using the generalized Pareto distribution enriched with the time-varying scale parameter. In this way, recent events affect the size of extreme losses more than distant events. The accuracy of SEP-POT value at risk (VaR) forecasts is backtested on seven stock indexes and three currency pairs and is compared with existing well-recognized methods. The results remain in favor of our model, showing that it constitutes a real alternative for forecasting extreme quantiles of financial returns.
预测市场风险是现代实证金融的核心所在。我们提出了一种新的自激概率阈值峰值(SEP - POT)模型,用于预测极端损失概率和风险价值。该模型借鉴了点过程方法应用于阈值峰值(POT)方法,但构建于离散时间框架之下。因此,时间被视为整数值,极端损失的日期可能出现在一系列不可分割的时间单位上。SEP - POT模型能够捕捉极端事件到来的自激性质,进而捕捉金融价格大幅下跌的强烈聚类特征。近期事件对极端损失概率的触发效应通过基于零截断负二项分布(NegBin)的离散加权函数来确定。极端损失幅度的序列相关性也通过引入随时间变化的尺度参数的广义帕累托分布来考虑。通过这种方式,近期事件对极端损失规模的影响大于远期事件。SEP - POT风险价值(VaR)预测的准确性在七个股票指数和三对货币对上进行了回测,并与现有的公认方法进行了比较。结果表明我们的模型更具优势,表明它是预测金融回报极端分位数的一种切实可行的替代方法。