Molina-Muñoz Jesús, Mora-Valencia Andrés, Perote Javier
Universidad de los Andes, School of Management, Calle 21 No. 1-20, Bogotá, Colombia.
University of Salamanca (IME), Campus Miguel de Unamuno (Edif. F.E.S.), 37007 Salamanca, Spain.
Physica A. 2020 Nov 1;557:124876. doi: 10.1016/j.physa.2020.124876. Epub 2020 Jun 27.
This paper investigates on the alpha-stable distribution capacity to capture the probability of market crashes by means of the dynamic forecasting of its alpha and beta parameters. On the basis of the GARCH-stable model, we design a market crash forecasting methodology that involves three-stepwise procedure: (i) Recursively estimation the GARCH-stable parameters through a rolling window; (ii) alpha-stable parameters forecasting according to a VAR model; and (iii) Crash probabilities forecasting and analysis. The model performance for alternative crash definitions is assessed in terms of different accuracy criteria, and compared with a random walk model as benchmark. Our applications to a wide variety of stock indexes for developed and emerging markets reveals a high degree of accuracy and replicability of the results. Hence the model represents an interesting tool for risk management and the design of early warning systems for future crashes.
本文通过对α和β参数的动态预测,研究α稳定分布捕捉市场崩溃概率的能力。基于GARCH-稳定模型,我们设计了一种市场崩溃预测方法,该方法包括三个步骤:(i)通过滚动窗口递归估计GARCH-稳定参数;(ii)根据VAR模型预测α稳定参数;(iii)预测和分析崩溃概率。根据不同的准确性标准评估替代崩溃定义的模型性能,并与作为基准的随机游走模型进行比较。我们对发达市场和新兴市场的各种股票指数的应用表明,结果具有高度的准确性和可复制性。因此,该模型是风险管理和未来崩溃预警系统设计的一个有趣工具。