Suppr超能文献

关于使用集中式时频表示作为深度卷积神经网络的输入:在非侵入式负载监测中的应用

On the Use of Concentrated Time-Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring.

作者信息

Houidi Sarra, Fourer Dominique, Auger François

机构信息

Laboratoire IBISC (Informatique, BioInformatique, Systèmes Complexes), EA 4526, University Evry/Paris-Saclay, 91020 Evry CEEEE, France.

Institut de Recherche en Energie Electrique de Nantes Atlantique (IREENA), EA 4642, University of Nantes, 44602 Saint-Nazaire, France.

出版信息

Entropy (Basel). 2020 Aug 19;22(9):911. doi: 10.3390/e22090911.

Abstract

Since decades past, time-frequency (TF) analysis has demonstrated its capability to efficiently handle non-stationary multi-component signals which are ubiquitous in a large number of applications. TF analysis us allows to estimate physics-related meaningful parameters (e.g., F0, group delay, etc.) and can provide sparse signal representations when a suitable tuning of the method parameters is used. On another hand, deep learning with Convolutional Neural Networks (CNN) is the current state-of-the-art approach for pattern recognition and allows us to automatically extract relevant signal features despite the fact that the trained models can suffer from a lack of interpretability. Hence, this paper proposes to combine together these two approaches to take benefit of their respective advantages and addresses non-intrusive load monitoring (NILM) which consists of identifying a home electrical appliance (HEA) from its measured energy consumption signal as a "toy" problem. This study investigates the role of the TF representation when synchrosqueezed or not, used as the input of a 2D CNN applied to a pattern recognition task. We also propose a solution for interpreting the information conveyed by the trained CNN through different neural architecture by establishing a link with our previously proposed "handcrafted" interpretable features thanks to the layer-wise relevant propagation (LRP) method. Our experiments on the publicly available PLAID dataset show excellent appliance recognition results (accuracy above 97%) using the suitable TF representation and allow an interpretation of the trained model.

摘要

几十年来,时频(TF)分析已证明其能够有效处理非平稳多分量信号,这些信号在大量应用中普遍存在。TF分析使我们能够估计与物理相关的有意义参数(例如,F0、群时延等),并且当对方法参数进行适当调整时,可以提供稀疏信号表示。另一方面,使用卷积神经网络(CNN)的深度学习是当前用于模式识别的最先进方法,它使我们能够自动提取相关信号特征,尽管训练模型可能缺乏可解释性。因此,本文提出将这两种方法结合起来,以利用它们各自的优势,并解决非侵入式负载监测(NILM)问题,该问题包括从测量的能耗信号中识别家用电器(HEA)作为一个“玩具”问题。本研究调查了在应用于模式识别任务的二维CNN的输入中,同步挤压或未同步挤压时TF表示的作用。我们还提出了一种解决方案,通过层相关传播(LRP)方法与我们之前提出的“手工制作”可解释特征建立联系,从而解释训练后的CNN通过不同神经架构传达的信息。我们在公开可用的PLAID数据集上的实验表明,使用合适的TF表示可获得出色的电器识别结果(准确率高于97%),并且可以对训练模型进行解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b3e/7597148/f5f1559ebfad/entropy-22-00911-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验