Suppr超能文献

基于 Kinect 的步态识别的深度卷积神经网络 KinectGaitNet。

KinectGaitNet: Kinect-Based Gait Recognition Using Deep Convolutional Neural Network.

机构信息

Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada.

出版信息

Sensors (Basel). 2022 Mar 29;22(7):2631. doi: 10.3390/s22072631.

Abstract

Over the past decade, gait recognition had gained a lot of attention in various research and industrial domains. These include remote surveillance, border control, medical rehabilitation, emotion detection from posture, fall detection, and sports training. The main advantages of identifying a person by their gait include unobtrusiveness, acceptance, and low costs. This paper proposes a convolutional neural network KinectGaitNet for Kinect-based gait recognition. The 3D coordinates of each of the body joints over the gait cycle are transformed to create a unique input representation. The proposed KinectGaitNet is trained directly using the 3D input representation without the necessity of the handcrafted features. The KinectGaitNet design allows avoiding gait cycle resampling, and the residual learning method ensures high accuracy without the degradation problem. The proposed deep learning architecture surpasses the recognition performance of all state-of-the-art methods for Kinect-based gait recognition by achieving 96.91% accuracy on UPCV and 99.33% accuracy on the KGB dataset. The method is the first, to the best of our knowledge, deep learning-based architecture that is based on a unique 3D input representation of joint coordinates. It achieves performance higher than previous traditional and deep learning methods, with fewer parameters and shorter inference time.

摘要

在过去的十年中,步态识别在各种研究和工业领域引起了广泛关注。这些领域包括远程监控、边境管制、医疗康复、基于姿势的情感检测、跌倒检测和运动训练。通过步态识别来识别人的主要优点包括非侵扰性、可接受性和低成本。本文提出了一种基于 Kinect 的卷积神经网络 KinectGaitNet 进行步态识别。通过对步态周期中每个身体关节的 3D 坐标进行变换,创建了一个独特的输入表示。所提出的 KinectGaitNet 直接使用 3D 输入表示进行训练,而无需手工制作特征。KinectGaitNet 的设计避免了步态周期重采样,而残差学习方法确保了高精度,而不会出现退化问题。所提出的深度学习架构在基于 Kinect 的步态识别方面超过了所有最先进方法的识别性能,在 UPCV 上达到了 96.91%的准确率,在 KGB 数据集上达到了 99.33%的准确率。据我们所知,该方法是第一个基于关节坐标独特 3D 输入表示的基于深度学习的架构。它实现了比以前的传统和深度学习方法更高的性能,具有更少的参数和更短的推理时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/9002886/724a9716eaca/sensors-22-02631-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验