Arnaiz-Del-Pozo Carlos, López-Paniagua Ignacio, López-Grande Alberto, González-Fernández Celina
ETSI Industriales, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Cerámica y Vidrio. Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain.
Entropy (Basel). 2020 Aug 30;22(9):959. doi: 10.3390/e22090959.
Industrial nitrogen liquefaction cycles are based on the Collins topology but integrate variations. Several pressure levels with liquefaction to medium pressure and compressor-expander sets are common. The cycle must be designed aiming to minimise specific power consumption rather than to maximise liquid yield. For these reasons, conclusions of general studies cannot be extrapolated directly. This article calculates the optimal share of total compressed flow to be expanded in an industrial Collins-based cycle for nitrogen liquefaction. Simulations in Unisim Design R451 using Peng Robinson EOS for nitrogen resulted in 88% expanded flow, which is greater than the 75-80% for conventional Collins cycles with helium or other substances. Optimum specific compression work resulted 430.7 kWh/ton of liquid nitrogen. For some operating conditions, the relation between liquid yield and specific power consumption was counterintuitive: larger yield entailed larger consumption. Exergy analysis showed 40.3% exergy efficiency of the optimised process. The exergy destruction distribution and exergy flow across the cycle is provided. Approximately 40% of the 59.7% exergy destruction takes place in the cooling after compression. This exergy could be used for secondary applications such as industrial heating, energy storage or for lower temperature applications as heat conditioning.
工业氮气液化循环基于柯林斯拓扑结构,但融入了一些变化。具有液化至中压以及压缩-膨胀机组的多个压力等级是常见的。该循环的设计目标必须是使单位功耗最小化,而非使液体产量最大化。由于这些原因,一般研究的结论不能直接外推。本文计算了在基于工业柯林斯循环的氮气液化过程中总压缩流中应膨胀的最佳份额。在Unisim Design R451中使用彭-罗宾逊状态方程对氮气进行模拟,结果显示膨胀流为88%,这高于使用氦气或其他物质的传统柯林斯循环的75%-80%。最佳单位压缩功为430.7千瓦时/吨液氮。在某些运行条件下,液体产量与单位功耗之间的关系违反直觉:产量越高,功耗越大。火用分析表明优化后的过程火用效率为40.3%。给出了整个循环的火用破坏分布和火用流。在压缩后的冷却过程中发生了59.7%的火用破坏中的约40%。这种火用可用于诸如工业加热、能量存储等二次应用,或用于如热调节等低温应用。