Suppr超能文献

时间分数阶Fisher-KPP方程和Fitzhugh-Nagumo方程。

Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations.

作者信息

Angstmann Christopher N, Henry Bruce I

机构信息

School of Mathematics and Statistics, UNSW, Sydney 2052 NSW, Australia.

出版信息

Entropy (Basel). 2020 Sep 16;22(9):1035. doi: 10.3390/e22091035.

Abstract

A standard reaction-diffusion equation consists of two additive terms, a diffusion term and a reaction rate term. The latter term is obtained directly from a reaction rate equation which is itself derived from known reaction kinetics, together with modelling assumptions such as the law of mass action for well-mixed systems. In formulating a reaction-subdiffusion equation, it is not sufficient to know the reaction rate equation. It is also necessary to know details of the reaction kinetics, even in well-mixed systems where reactions are not diffusion limited. This is because, at a fundamental level, birth and death processes need to be dealt with differently in subdiffusive environments. While there has been some discussion of this in the published literature, few examples have been provided, and there are still very many papers being published with Caputo fractional time derivatives simply replacing first order time derivatives in reaction-diffusion equations. In this paper, we formulate clear examples of reaction-subdiffusion systems, based on; equal birth and death rate dynamics, Fisher-Kolmogorov, Petrovsky and Piskunov (Fisher-KPP) equation dynamics, and Fitzhugh-Nagumo equation dynamics. These examples illustrate how to incorporate considerations of reaction kinetics into fractional reaction-diffusion equations. We also show how the dynamics of a system with birth rates and death rates cancelling, in an otherwise subdiffusive environment, are governed by a mass-conserving tempered time fractional diffusion equation that is subdiffusive for short times but standard diffusion for long times.

摘要

一个标准的反应扩散方程由两个相加项组成,一个扩散项和一个反应速率项。后一项直接从反应速率方程得到,而该反应速率方程本身是从已知的反应动力学以及诸如均相系统的质量作用定律等建模假设推导而来的。在构建反应次扩散方程时,仅知道反应速率方程是不够的。即使在反应不受扩散限制的均相系统中,也有必要了解反应动力学的细节。这是因为,从根本层面上讲,在次扩散环境中,出生和死亡过程需要以不同方式处理。虽然已发表的文献中对此有一些讨论,但提供的例子很少,而且仍有很多论文只是简单地用卡普托分数阶时间导数取代反应扩散方程中的一阶时间导数。在本文中,我们基于相等的出生率和死亡率动力学、费希尔 - 柯尔莫哥洛夫、彼得罗夫斯基和皮斯库诺夫(Fisher - KPP)方程动力学以及菲茨休 - 纳古莫方程动力学,给出了反应次扩散系统的清晰示例。这些例子说明了如何将反应动力学的考虑纳入分数阶反应扩散方程。我们还展示了在其他方面为次扩散环境中出生率和死亡率相互抵消的系统的动力学,是如何由一个质量守恒的缓和时间分数阶扩散方程所支配的,该方程在短时间内是次扩散的,但在长时间内是标准扩散的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbc/7597094/3584be2c881f/entropy-22-01035-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验