Vitreous Materials Laboratory, Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP, Brazil.
J Chem Phys. 2018 Jul 14;149(2):024503. doi: 10.1063/1.5034091.
Can any liquid be cooled down below its melting point to an isentropic (Kauzmann) temperature without vitrifying or crystallizing? This long-standing question concerning the ultimate fate of supercooled liquids is one of the key problems in condensed matter physics and materials science. In this article, we used a plethora of thermodynamic and kinetic data and well established theoretical models to estimate the kinetic spinodal temperature, T (the temperature where the average time for the first critical crystalline nucleus to appear becomes equal to the average relaxation time of a supercooled liquid), and the Kauzmann temperature, T, for two substances. We focused our attention on selected compositions of the two most important oxide glass-forming systems: a borate and a silicate-which show measurable homogeneous crystal nucleation in laboratory time scales-as proxies of these families of glass-formers. For both materials, we found that the T are significantly higher than the predicted T. Therefore, at ambient pressure, at deep supercoolings before approaching T, crystallization wins the race over structural relaxation. Hence, the temperature of entropy catastrophe predicted by Kauzmann cannot be reached for the studied substances; it is averted by incipient crystal nucleation. Our finding that T > T for two real glasses corroborate the results of computer simulations for a pressurized silica glass.
任何液体都能在不玻璃化或结晶的情况下冷却到等熵(Kauzmann)温度以下吗?这个关于过冷液体最终命运的长期问题是凝聚态物理和材料科学的关键问题之一。在本文中,我们使用了大量的热力学和动力学数据以及成熟的理论模型来估计动力学旋节线温度 T(第一个临界晶核出现的平均时间等于过冷液体的平均弛豫时间的温度)和 Kauzmann 温度 T 对于两种物质。我们关注了两个最重要的氧化物玻璃形成系统的选定组成部分:硼酸盐和硅酸盐-它们在实验室时间尺度上表现出可测量的均匀晶体成核-作为这些玻璃形成家族的代表。对于这两种材料,我们发现 T 明显高于预测的 T。因此,在环境压力下,在接近 T 之前的深度过冷时,结晶在结构弛豫中获胜。因此,Kauzmann 预测的熵灾变温度无法达到研究物质的温度;它被初始晶核形成所避免。我们发现 T > T 对于两种实际玻璃的结果与加压二氧化硅玻璃的计算机模拟结果相符。