Suppr超能文献

基于骨骼的动作识别的全局共现特征与局部空间特征学习

Global Co-Occurrence Feature and Local Spatial Feature Learning for Skeleton-Based Action Recognition.

作者信息

Xie Jun, Xin Wentian, Liu Ruyi, Miao Qiguang, Sheng Lijie, Zhang Liang, Gao Xuesong

机构信息

School of Computer Science and Technology, Xidian University, Xi'an 710071, China.

State Key Laboratory of Digital Multimedia Technology, Hisense Co., Ltd., Qingdao 266071, China.

出版信息

Entropy (Basel). 2020 Oct 6;22(10):1135. doi: 10.3390/e22101135.

Abstract

Recent progress on skeleton-based action recognition has been substantial, benefiting mostly from the explosive development of Graph Convolutional Networks (GCN). However, prevailing GCN-based methods may not effectively capture the global co-occurrence features among joints and the local spatial structure features composed of adjacent bones. They also ignore the effect of channels unrelated to action recognition on model performance. Accordingly, to address these issues, we propose a Global Co-occurrence feature and Local Spatial feature learning model (GCLS) consisting of two branches. The first branch, based on the Vertex Attention Mechanism branch (VAM-branch), captures the global co-occurrence feature of actions effectively; the second, based on the Cross-kernel Feature Fusion branch (CFF-branch), extracts local spatial structure features composed of adjacent bones and restrains the channels unrelated to action recognition. Extensive experiments on two large-scale datasets, NTU-RGB+D and Kinetics, demonstrate that GCLS achieves the best performance when compared to the mainstream approaches.

摘要

基于骨架的动作识别最近取得了显著进展,这主要得益于图卷积网络(GCN)的迅猛发展。然而,主流的基于GCN的方法可能无法有效地捕捉关节之间的全局共现特征以及由相邻骨骼组成的局部空间结构特征。它们还忽略了与动作识别无关的通道对模型性能的影响。因此,为了解决这些问题,我们提出了一种由两个分支组成的全局共现特征和局部空间特征学习模型(GCLS)。第一个分支基于顶点注意力机制分支(VAM分支),有效地捕捉动作的全局共现特征;第二个分支基于交叉核特征融合分支(CFF分支),提取由相邻骨骼组成的局部空间结构特征,并抑制与动作识别无关的通道。在两个大规模数据集NTU-RGB+D和Kinetics上进行的大量实验表明,与主流方法相比,GCLS取得了最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cfa/7597279/a5f7c943968a/entropy-22-01135-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验