Suppr超能文献

用于基于骨架的动作识别的自适应注意力记忆图卷积网络

Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition.

作者信息

Liu Di, Xu Hui, Wang Jianzhong, Lu Yinghua, Kong Jun, Qi Miao

机构信息

College of Information Sciences and Technology, Northeast Normal University, Changchun 130117, China.

Institute for Intelligent Elderly Care, Changchun Humanities and Sciences College, Changchun 130117, China.

出版信息

Sensors (Basel). 2021 Oct 12;21(20):6761. doi: 10.3390/s21206761.

Abstract

Graph Convolutional Networks (GCNs) have attracted a lot of attention and shown remarkable performance for action recognition in recent years. For improving the recognition accuracy, how to build graph structure adaptively, select key frames and extract discriminative features are the key problems of this kind of method. In this work, we propose a novel Adaptive Attention Memory Graph Convolutional Networks (AAM-GCN) for human action recognition using skeleton data. We adopt GCN to adaptively model the spatial configuration of skeletons and employ Gated Recurrent Unit (GRU) to construct an attention-enhanced memory for capturing the temporal feature. With the memory module, our model can not only remember what happened in the past but also employ the information in the future using multi-bidirectional GRU layers. Furthermore, in order to extract discriminative temporal features, the attention mechanism is also employed to select key frames from the skeleton sequence. Extensive experiments on Kinetics, NTU RGB+D and HDM05 datasets show that the proposed network achieves better performance than some state-of-the-art methods.

摘要

近年来,图卷积网络(GCN)备受关注,并在动作识别方面展现出卓越性能。为提高识别准确率,如何自适应构建图结构、选择关键帧以及提取判别性特征是这类方法的关键问题。在这项工作中,我们提出了一种新颖的自适应注意力记忆图卷积网络(AAM - GCN),用于基于骨骼数据的人体动作识别。我们采用GCN对骨骼的空间配置进行自适应建模,并使用门控循环单元(GRU)构建注意力增强记忆来捕捉时间特征。借助记忆模块,我们的模型不仅能够记住过去发生的事情,还能通过多双向GRU层利用未来的信息。此外,为了提取判别性时间特征,注意力机制还用于从骨骼序列中选择关键帧。在Kinetics、NTU RGB + D和HDM05数据集上进行的大量实验表明,所提出的网络比一些现有最先进方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3308/8538327/dda5d22311a5/sensors-21-06761-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验