Suppr超能文献

网络中竞争信息的传播

Spreading of Competing Information in a Network.

作者信息

Bagarello Fabio, Gargano Francesco, Oliveri Francesco

机构信息

Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy.

I.N.F.N- Sezione di Napoli, 80126 Napoli, Italy.

出版信息

Entropy (Basel). 2020 Oct 17;22(10):1169. doi: 10.3390/e22101169.

Abstract

We propose a simple approach to investigate the spreading of news in a network. In more detail, we consider two different versions of a single type of information, one of which is close to the essence of the information (and we call it ), and another of which is somehow modified from some biased agent of the system (, in our language). Good and fake news move around some agents, getting the original information and returning their own version of it to other agents of the network. Our main interest is to deduce the dynamics for such spreading, and to analyze if and under which conditions good news wins against fake news. The methodology is based on the use of ladder fermionic operators, which are quite efficient in modeling dispersion effects and interactions between the agents of the system.

摘要

我们提出了一种简单的方法来研究网络中新闻的传播。更详细地说,我们考虑单一类型信息的两种不同版本,其中一种接近信息的本质(我们称之为 ),另一种是由系统中的某个有偏见的主体以某种方式修改而来的(用我们的术语来说是 )。真实新闻和虚假新闻在一些主体之间传播,获取原始信息并将其自身版本返回给网络中的其他主体。我们主要感兴趣的是推导这种传播的动态过程,并分析真实新闻是否以及在何种条件下能战胜虚假新闻。该方法基于阶梯费米子算符的使用,这在对系统主体之间的色散效应和相互作用进行建模时非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69a8/7597340/6f59232ca1f4/entropy-22-01169-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验