Koshy Ranjana, Mahmood Ausif
Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT 06604, USA.
Entropy (Basel). 2020 Oct 21;22(10):1186. doi: 10.3390/e22101186.
Face liveness detection is a critical preprocessing step in face recognition for avoiding face spoofing attacks, where an impostor can impersonate a valid user for authentication. While considerable research has been recently done in improving the accuracy of face liveness detection, the best current approaches use a two-step process of first applying non-linear anisotropic diffusion to the incoming image and then using a deep network for final liveness decision. Such an approach is not viable for real-time face liveness detection. We develop two end-to-end real-time solutions where nonlinear anisotropic diffusion based on an additive operator splitting scheme is first applied to an incoming static image, which enhances the edges and surface texture, and preserves the boundary locations in the real image. The diffused image is then forwarded to a pre-trained Specialized Convolutional Neural Network (SCNN) and the Inception network version 4, which identify the complex and deep features for face liveness classification. We evaluate the performance of our integrated approach using the SCNN and Inception v4 on the Replay-Attack dataset and Replay-Mobile dataset. The entire architecture is created in such a manner that, once trained, the face liveness detection can be accomplished in real-time. We achieve promising results of 96.03% and 96.21% face liveness detection accuracy with the SCNN, and 94.77% and 95.53% accuracy with the Inception v4, on the Replay-Attack, and Replay-Mobile datasets, respectively. We also develop a novel deep architecture for face liveness detection on video frames that uses the diffusion of images followed by a deep Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) to classify the video sequence as real or fake. Even though the use of CNN followed by LSTM is not new, combining it with diffusion (that has proven to be the best approach for single image liveness detection) is novel. Performance evaluation of our architecture on the REPLAY-ATTACK dataset gave 98.71% test accuracy and 2.77% Half Total Error Rate (HTER), and on the REPLAY-MOBILE dataset gave 95.41% accuracy and 5.28% HTER.
面部活体检测是人脸识别中的一个关键预处理步骤,用于避免面部欺骗攻击,即冒名顶替者可以冒充合法用户进行身份验证。虽然最近在提高面部活体检测的准确性方面进行了大量研究,但目前最好的方法采用两步过程:首先对输入图像应用非线性各向异性扩散,然后使用深度网络进行最终的活体判定。这种方法对于实时面部活体检测并不可行。我们开发了两种端到端实时解决方案,其中基于加法算子分裂方案的非线性各向异性扩散首先应用于输入的静态图像,这增强了边缘和表面纹理,并保留了真实图像中的边界位置。然后将扩散后的图像转发到预训练的专用卷积神经网络(SCNN)和Inception网络版本4,它们识别用于面部活体分类的复杂深度特征。我们在Replay-Attack数据集和Replay-Mobile数据集上使用SCNN和Inception v4评估了我们集成方法的性能。整个架构的创建方式是,一旦训练完成,面部活体检测就能实时完成。在Replay-Attack和Replay-Mobile数据集上,我们使用SCNN分别取得了96.03%和96.21%的面部活体检测准确率,使用Inception v4分别取得了94.77%和95.53%的准确率,结果令人满意。我们还开发了一种用于视频帧面部活体检测的新型深度架构,该架构先对图像进行扩散,然后使用深度卷积神经网络(CNN)和长短期记忆网络(LSTM)将视频序列分类为真实或伪造。尽管先使用CNN再使用LSTM并不新鲜,但将其与扩散(已被证明是单图像活体检测的最佳方法)相结合却是新颖的。我们的架构在REPLAY-ATTACK数据集上的性能评估给出了98.71%的测试准确率和2.77%的半总错误率(HTER),在REPLAY-MOBILE数据集上给出了95.41%的准确率和5.28%的HTER。