IEEE Trans Image Process. 2015 Aug;24(8):2456-65. doi: 10.1109/TIP.2015.2422574. Epub 2015 Apr 13.
Spoofing using photographs or videos is one of the most common methods of attacking face recognition and verification systems. In this paper, we propose a real-time and nonintrusive method based on the diffusion speed of a single image to address this problem. In particular, inspired by the observation that the difference in surface properties between a live face and a fake one is efficiently revealed in the diffusion speed, we exploit antispoofing features by utilizing the total variation flow scheme. More specifically, we propose defining the local patterns of the diffusion speed, the so-called local speed patterns, as our features, which are input into the linear SVM classifier to determine whether the given face is fake or not. One important advantage of the proposed method is that, in contrast to previous approaches, it accurately identifies diverse malicious attacks regardless of the medium of the image, e.g., paper or screen. Moreover, the proposed method does not require any specific user action. Experimental results on various data sets show that the proposed method is effective for face liveness detection as compared with previous approaches proposed in studies in the literature.
使用照片或视频进行欺骗是攻击人脸识别和验证系统最常见的方法之一。在本文中,我们提出了一种基于单图像扩散速度的实时、非侵入式方法来解决这个问题。具体来说,受活体人脸和伪造人脸之间表面特性差异在扩散速度中得到有效揭示的观察结果的启发,我们利用全变分流方案挖掘反欺骗特征。更具体地说,我们提出将扩散速度的局部模式定义为我们的特征,即局部速度模式,并将其输入到线性 SVM 分类器中,以确定给定的人脸是否为伪造。与之前的方法相比,所提出方法的一个重要优势是,它可以准确识别各种恶意攻击,而不受图像媒介的影响,例如纸张或屏幕。此外,所提出的方法不需要任何特定的用户操作。在各种数据集上的实验结果表明,与文献中提出的先前方法相比,所提出的方法对于人脸活体检测是有效的。