Suppr超能文献

超高能宇宙线广延大气簇射中μ子计数的机器学习技术比较分析

A Comparative Analysis of Machine Learning Techniques for Muon Count in UHECR Extensive Air-Showers.

作者信息

Guillén Alberto, Martínez José, Carceller Juan Miguel, Herrera Luis Javier

机构信息

Computer Technology and Architecture, University of Granada, 18071 Granada, Spain.

Cosmos and Theoretical Physics Department, Univerisity of Granada, 18071 Granada, Spain.

出版信息

Entropy (Basel). 2020 Oct 26;22(11):1216. doi: 10.3390/e22111216.

Abstract

The main goal of this work is to adapt a Physics problem to the Machine Learning (ML) domain and to compare several techniques to solve it. The problem consists of how to perform muon count from the signal registered by particle detectors which record a mix of electromagnetic and muonic signals. Finding a good solution could be a building block on future experiments. After proposing an approach to solve the problem, the experiments show a performance comparison of some popular ML models using two different hadronic models for the test data. The results show that the problem is suitable to be solved using ML as well as how critical the feature selection stage is regarding precision and model complexity.

摘要

这项工作的主要目标是将一个物理问题适配到机器学习(ML)领域,并比较几种解决该问题的技术。该问题包括如何根据粒子探测器记录的信号进行μ子计数,这些探测器记录了电磁信号和μ子信号的混合。找到一个好的解决方案可能是未来实验的一个基石。在提出一种解决问题的方法后,实验展示了使用两种不同强子模型对测试数据的一些流行ML模型的性能比较。结果表明,该问题适合用ML解决,以及特征选择阶段对精度和模型复杂度有多关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4257/7712216/3126c340f438/entropy-22-01216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验