Guillén Alberto, Martínez José, Carceller Juan Miguel, Herrera Luis Javier
Computer Technology and Architecture, University of Granada, 18071 Granada, Spain.
Cosmos and Theoretical Physics Department, Univerisity of Granada, 18071 Granada, Spain.
Entropy (Basel). 2020 Oct 26;22(11):1216. doi: 10.3390/e22111216.
The main goal of this work is to adapt a Physics problem to the Machine Learning (ML) domain and to compare several techniques to solve it. The problem consists of how to perform muon count from the signal registered by particle detectors which record a mix of electromagnetic and muonic signals. Finding a good solution could be a building block on future experiments. After proposing an approach to solve the problem, the experiments show a performance comparison of some popular ML models using two different hadronic models for the test data. The results show that the problem is suitable to be solved using ML as well as how critical the feature selection stage is regarding precision and model complexity.
这项工作的主要目标是将一个物理问题适配到机器学习(ML)领域,并比较几种解决该问题的技术。该问题包括如何根据粒子探测器记录的信号进行μ子计数,这些探测器记录了电磁信号和μ子信号的混合。找到一个好的解决方案可能是未来实验的一个基石。在提出一种解决问题的方法后,实验展示了使用两种不同强子模型对测试数据的一些流行ML模型的性能比较。结果表明,该问题适合用ML解决,以及特征选择阶段对精度和模型复杂度有多关键。