Suppr超能文献

用于μ子光谱分析的机器学习方法。

Machine learning approach to muon spectroscopy analysis.

作者信息

Tula T, Möller G, Quintanilla J, Giblin S R, Hillier A D, McCabe E E, Ramos S, Barker D S, Gibson S

机构信息

School of Physical Sciences, University of Kent, Park Wood Rd, Canterbury CT2 7NH, United Kingdom.

School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom.

出版信息

J Phys Condens Matter. 2021 Apr 26;33(19). doi: 10.1088/1361-648X/abe39e.

Abstract

In recent years, artificial intelligence techniques have proved to be very successful when applied to problems in physical sciences. Here we apply an unsupervised machine learning (ML) algorithm called principal component analysis (PCA) as a tool to analyse the data from muon spectroscopy experiments. Specifically, we apply the ML technique to detect phase transitions in various materials. The measured quantity in muon spectroscopy is an asymmetry function, which may hold information about the distribution of the intrinsic magnetic field in combination with the dynamics of the sample. Sharp changes of shape of asymmetry functions-measured at different temperatures-might indicate a phase transition. Existing methods of processing the muon spectroscopy data are based on regression analysis, but choosing the right fitting function requires knowledge about the underlying physics of the probed material. Conversely, PCA focuses on small differences in the asymmetry curves and works without any prior assumptions about the studied samples. We discovered that the PCA method works well in detecting phase transitions in muon spectroscopy experiments and can serve as an alternative to current analysis, especially if the physics of the studied material are not entirely known. Additionally, we found out that our ML technique seems to work best with large numbers of measurements, regardless of whether the algorithm takes data only for a single material or whether the analysis is performed simultaneously for many materials with different physical properties.

摘要

近年来,人工智能技术在应用于物理科学问题时已被证明非常成功。在此,我们应用一种名为主成分分析(PCA)的无监督机器学习(ML)算法作为工具,来分析来自μ子光谱实验的数据。具体而言,我们应用ML技术来检测各种材料中的相变。μ子光谱中测量的量是一个不对称函数,它可能结合样品的动力学包含有关固有磁场分布的信息。在不同温度下测量的不对称函数形状的急剧变化可能表明发生了相变。现有的处理μ子光谱数据的方法基于回归分析,但选择合适的拟合函数需要了解被探测材料的基础物理知识。相反,PCA关注不对称曲线中的微小差异,并且在对所研究的样品没有任何先验假设的情况下工作。我们发现PCA方法在检测μ子光谱实验中的相变方面效果良好,并且可以作为当前分析的替代方法,特别是在所研究材料的物理性质不完全清楚的情况下。此外,我们发现我们的ML技术似乎在大量测量时效果最佳,无论算法是仅获取单一材料的数据,还是同时对具有不同物理性质的多种材料进行分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验