Biology Department, University of Pisa, 56126 Pisa, Italy.
Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
Biosensors (Basel). 2020 Dec 3;10(12):197. doi: 10.3390/bios10120197.
Oxygen levels in plant tissues may vary, depending on metabolism, diffusion barriers, and environmental availability. Current techniques to assess the oxic status of plant cells rely primarily on invasive microoptodes or Clark-type electrodes, which are not optimally suited for experiments that require high spatial and temporal resolution. In this case, a genetically encoded oxygen biosensor is required instead. This article reports the design, test, and optimization of a hypoxia-signaling reporter, based on five-time repeated hypoxia-responsive promoter elements (HRPE) driving the expression of different reporter proteins. Specifically, this study aimed to improve its performance as a reporter of hypoxic conditions by testing the effect of different untranslated regions (UTRs) at the 5' end of the reporter coding sequence. Next, we characterized an optimized version of the promoter () in terms of hypoxia sensitivity and time responsiveness. We also observed that severe oxygen deficiency counteracted the reporter activity due to inhibition of GFP maturation, which requires molecular oxygen. To overcome this limitation, we therefore employed an oxygen-independent UnaG fluorescent protein-coupled to an O-dependent mCherry fluorophore under the control of the optimized promoter. Remarkably, this sensor, provided a different mCherry/UnaG ratiometric output depending on the externally imposed oxygen concentration, providing a solution to distinguish between different degrees of tissue hypoxia. Moreover, a ubiquitously expressed UnaG-mCherry fusion could be used to image oxygen concentrations directly, albeit at a narrow range. The luminescent and fluorescent hypoxia-reporters described here can readily be used to conduct studies that involve anaerobiosis in plants.
植物组织中的氧气水平可能因代谢、扩散障碍和环境可用性而有所不同。目前评估植物细胞氧合状态的技术主要依赖于侵入性微光纤或克拉克型电极,但这些技术不适用于需要高时空分辨率的实验。在这种情况下,需要使用基因编码的氧生物传感器。本文报道了一种基于五次重复缺氧反应启动子元件(HRPE)驱动不同报告蛋白表达的缺氧信号报告基因的设计、测试和优化。具体来说,本研究旨在通过测试报告编码序列 5'端不同非翻译区(UTR)的作用来提高其作为缺氧条件报告基因的性能。接下来,我们从缺氧敏感性和时间响应性方面对优化后的启动子()进行了表征。我们还观察到,严重的缺氧会由于 GFP 成熟所需的分子氧的抑制而抵消报告基因的活性。为了克服这一限制,我们因此在优化后的 启动子的控制下,使用了一种与氧无关的 UnaG 荧光蛋白与氧依赖性 mCherry 荧光团相偶联的报告基因。值得注意的是,这种传感器根据外部施加的氧浓度提供了不同的 mCherry/UnaG 比率输出,从而提供了一种区分组织缺氧不同程度的解决方案。此外,一种普遍表达的 UnaG-mCherry 融合蛋白可直接用于成像氧浓度,尽管范围较窄。本文描述的发光和荧光缺氧报告基因可用于研究植物中的厌氧过程。