European Institute for Molecular Imaging, University of Münster, Röntgenstraße 16, D-48149, Münster, Germany.
Institut für Anorganische und Analytische Chemie, University of Münster, Corrensstraße 28-30, D-48149, Münster, Germany; CeNTech, CiMIC, SoN, Heisenbergstraße 11, D-48149, Münster, Germany.
Biosens Bioelectron. 2023 Feb 1;221:114917. doi: 10.1016/j.bios.2022.114917. Epub 2022 Nov 17.
Hypoxia is an essential regulator of cell metabolism, affects cell migration and angiogenesis during development and contributes to a wide range of pathological conditions. Multiple techniques to assess hypoxia through oxygen-imaging have been developed. However, significant limitations include low spatiotemporal resolution, limited tissue penetration of exogenous probes and non-dynamic signals due to irreversible probe-chemistry. First genetically-encoded reporters only partly overcame these limitations as the green and red fluorescent proteins (GFP/RFP) families require molecular oxygen for fluorescence. For the herein presented ratiometric and FRET-FLIM reporters dUnORS and dUnOFLS, we exploited oxygen-dependent maturation in combination with the hypoxia-tolerant fluorescent-protein UnaG. For ratiometric measurements, UnaG was fused to the orange large Stokes Shift protein CyOFP1, allowing excitation with a single light-source, while fusion of UnaG with mOrange2 allowed FRET-FLIM analysis. Imaging live or fixed cultured cells for calibration, we applied both reporters in spheroid and tumor transplantation-models and obtained graded information on oxygen-availability at cellular resolution, establishing these sensors as promising tools for visualizing oxygen-gradients in-vivo.
缺氧是细胞代谢的一个重要调节因子,它影响发育过程中的细胞迁移和血管生成,并导致广泛的病理状况。已经开发出多种通过氧成像来评估缺氧的技术。然而,这些技术存在显著的局限性,包括时空分辨率低、外源探针的组织穿透性有限,以及由于探针化学不可逆转而导致信号非动态性。第一代遗传编码报告器部分克服了这些局限性,因为绿色和红色荧光蛋白(GFP/RFP)家族需要分子氧才能产生荧光。对于本文中提出的比率和 FRET-FLIM 报告器 dUnORS 和 dUnOFLS,我们利用了氧依赖性成熟过程,并结合了耐受缺氧的荧光蛋白 UnaG。对于比率测量,将 UnaG 融合到橙色大斯托克斯位移蛋白 CyOFP1 中,允许使用单个光源进行激发,而将 UnaG 与 mOrange2 融合则允许进行 FRET-FLIM 分析。我们通过活细胞或固定培养细胞的成像来进行校准,将这两种报告器应用于球体和肿瘤移植模型中,并以细胞分辨率获得了关于氧可用性的分级信息,这些传感器有望成为可视化体内氧梯度的工具。