Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India.
Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia.
J Hazard Mater. 2021 May 5;409:124661. doi: 10.1016/j.jhazmat.2020.124661. Epub 2020 Nov 25.
In this study, we reported the biological approach to synthesis of ZnO nanorod (NR) on the reduced graphene oxide (RGO) for photocatalytic, antibacterial activity and hydrogen production under sunlight. Bacillus subtilis played a vital role in the production of biogenic ammonia from synthetic urine and utilized for the synthesis of ZnONR on the RGO sheet. The morphological study revealed that RGO sheets displayed a tremendous role in anchoring ZnONR. XRD patterns showed the ZnO crystal phase on the RGO sheets. XPS and Raman spectra confirmed that the bio-hydrothermal method as suitable for GO converted into RGO. The transient photocurrent and I/V measurement are exhibited as an increment on the RGO-ZnONR compared to ZnONR. The RGO-ZnONR composites showed excellent performance with decolorization of MB and textile dyes and efficient control of the E. coli and S. aureus. RGO-ZnONR exhibited remarkable noted as a higher photocatalytic hydrogen evolution rate (940 μmol/h/g) than the ZnONR (369.5 μmol/h/g ). As a result of photocatalytic performance to correlate with sunlight intensity was extensively studied. RGO plays an essential role in interface electron transfer from sunlight to ZnONR for enhancing •OH radical formation to cleavage of dye color substance and eradicated bacterial cells.
在这项研究中,我们报告了一种生物方法,用于在还原氧化石墨烯 (RGO) 上合成 ZnO 纳米棒 (NR),以实现光催化、抗菌活性和阳光下产氢。枯草芽孢杆菌在从合成尿液中生产生物氨方面发挥了重要作用,并用于在 RGO 片上合成 ZnONR。形态研究表明,RGO 片在固定 ZnONR 方面发挥了巨大作用。XRD 图谱显示 RGO 片上存在 ZnO 晶体相。XPS 和拉曼光谱证实,生物水热法适合将 GO 转化为 RGO。瞬态光电流和 I/V 测量显示,与单独的 ZnONR 相比,RGO-ZnONR 的电流有所增加。RGO-ZnONR 复合材料在 MB 和纺织染料的脱色以及对大肠杆菌和金黄色葡萄球菌的有效控制方面表现出优异的性能。与 ZnONR(369.5 μmol/h/g)相比,RGO-ZnONR 表现出更高的光催化析氢速率(940 μmol/h/g)。因此,广泛研究了与太阳光强度相关的光催化性能。RGO 在界面电子从太阳光转移到 ZnONR 以增强 •OH 自由基形成从而分解染料颜色物质和消除细菌细胞方面发挥着重要作用。