School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India.
Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516003, Andhra Pradesh, India.
ChemSusChem. 2017 Sep 22;10(18):3588-3603. doi: 10.1002/cssc.201701024. Epub 2017 Aug 23.
The development of noble metal-free catalysts for hydrogen evolution is required for energy applications. In this regard, ternary heterojunction nanocomposites consisting of ZnO nanoparticles anchored on MoS -RGO (RGO=reduced graphene oxide) nanosheets as heterogeneous catalysts show highly efficient photocatalytic H evolution. In the photocatalytic process, the catalyst dispersed in an electrolytic solution (S and SO ions) exhibits an enhanced rate of H evolution, and optimization experiments reveal that ZnO with 4.0 wt % of MoS -RGO nanosheets gives the highest photocatalytic H production of 28.616 mmol h g under sunlight irradiation; approximately 56 times higher than that on bare ZnO and several times higher than those of other ternary photocatalysts. The superior catalytic activity can be attributed to the in situ generation of ZnS, which leads to improved interfacial charge transfer to the MoS cocatalyst and RGO, which has plenty of active sites available for photocatalytic reactions. Recycling experiments also proved the stability of the optimized photocatalyst. In addition, the ternary nanocomposite displayed multifunctional properties for hydrogen evolution activity under electrocatalytic and photoelectrocatalytic conditions owing to the high electrode-electrolyte contact area. Thus, the present work provides very useful insights for the development of inexpensive, multifunctional catalysts without noble metal loading to achieve a high rate of H generation.
对于能源应用,需要开发用于析氢的无贵金属催化剂。在这方面,由锚定在 MoS -RGO(RGO=还原氧化石墨烯)纳米片上的 ZnO 纳米颗粒组成的三元异质结纳米复合材料作为非均相催化剂,表现出高效的光催化析氢性能。在光催化过程中,催化剂分散在电解质溶液(S 和 SO 离子)中表现出增强的析氢速率,优化实验表明,负载有 4.0wt% MoS -RGO 纳米片的 ZnO 给出了最高的光催化 H2 产率 28.616mmol h-1 g-1,在阳光照射下;大约是 bare ZnO 的 56 倍,是其他三元光催化剂的几倍。优越的催化活性可归因于 ZnS 的原位生成,这导致界面电荷向 MoS 共催化剂和 RGO 的转移得到改善,RGO 具有大量的活性位点可用于光催化反应。回收实验还证明了优化后的光催化剂的稳定性。此外,由于具有高的电极-电解质接触面积,三元纳米复合材料在电催化和光电催化条件下表现出用于析氢活性的多功能特性。因此,本工作为开发无贵金属负载的廉价、多功能催化剂以实现高的 H2 生成速率提供了非常有用的见解。