Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Unit of Pharmaco Therapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
Diabetes Metab Res Rev. 2021 Oct;37(7):e3426. doi: 10.1002/dmrr.3426. Epub 2021 Feb 23.
In primary care, identifying patients with type 2 diabetes (T2D) who are at increased risk of hypoglycaemia is important for the prevention of hypoglycaemic events. We aimed to develop a screening tool based on machine learning to identify such patients using routinely available demographic and medication data.
We used a cohort study design and the Groningen Initiative to ANalyse Type 2 diabetes Treatment (GIANTT) medical record database to develop models for hypoglycaemia risk. The first hypoglycaemic event in the observation period (2007-2013) was the outcome. Demographic and medication data were used as predictor variables to train machine learning models. The performance of the models was compared with a model using additional clinical data using fivefold cross validation with the area under the receiver operator characteristic curve (AUC) as a metric.
We included 13,876 T2D patients. The best performing model including only demographic and medication data was logistic regression with least absolute shrinkage and selection operator, with an AUC of 0.71. Ten variables were included (odds ratio): male gender (0.997), age (0.990), total drug count (1.012), glucose-lowering drug count (1.039), sulfonylurea use (1.62), insulin use (1.769), pre-mixed insulin use (1.109), insulin count (1.827), insulin duration (1.193), and antidepressant use (1.05). The proposed model obtained a similar performance to the model using additional clinical data.
Using demographic and medication data, a model for identifying patients at increased risk of hypoglycaemia was developed using machine learning. This model can be used as a tool in primary care to screen for patients with T2D who may need additional attention to prevent or reduce hypoglycaemic events.
在初级保健中,识别出患有 2 型糖尿病(T2D)且有低血糖风险增加的患者,对于预防低血糖事件至关重要。我们旨在开发一种基于机器学习的筛查工具,使用常规可得的人口统计学和药物数据来识别此类患者。
我们使用队列研究设计和格罗宁根倡议分析 2 型糖尿病治疗(GIANTT)医疗记录数据库来开发低血糖风险模型。观察期内(2007-2013 年)的第一次低血糖事件为结局。将人口统计学和药物数据用作预测变量,以训练机器学习模型。使用 5 倍交叉验证,以接收者操作特征曲线下的面积(AUC)作为衡量标准,比较模型的性能与使用额外临床数据的模型。
我们纳入了 13876 名 T2D 患者。仅包括人口统计学和药物数据的最佳表现模型是逻辑回归和最小绝对收缩和选择算子,AUC 为 0.71。纳入了 10 个变量(优势比):男性(0.997)、年龄(0.990)、总药物计数(1.012)、降血糖药物计数(1.039)、磺脲类药物使用(1.62)、胰岛素使用(1.769)、预混胰岛素使用(1.109)、胰岛素计数(1.827)、胰岛素持续时间(1.193)和抗抑郁药使用(1.05)。所提出的模型与使用额外临床数据的模型具有相似的性能。
使用人口统计学和药物数据,使用机器学习开发了一种识别低血糖风险增加的患者的模型。该模型可作为初级保健中的一种工具,用于筛选可能需要额外关注以预防或减少低血糖事件的 T2D 患者。