Suppr超能文献

一种基于新型电子健康记录的机器学习模型,用于预测老年糖尿病患者因严重低血糖而住院的风险:一项全港范围的队列研究和建模研究。

A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study.

机构信息

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.

Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.

出版信息

PLoS Med. 2024 Apr 12;21(4):e1004369. doi: 10.1371/journal.pmed.1004369. eCollection 2024 Apr.

Abstract

BACKGROUND

Older adults with diabetes are at high risk of severe hypoglycemia (SH). Many machine-learning (ML) models predict short-term hypoglycemia are not specific for older adults and show poor precision-recall. We aimed to develop a multidimensional, electronic health record (EHR)-based ML model to predict one-year risk of SH requiring hospitalization in older adults with diabetes.

METHODS AND FINDINGS

We adopted a case-control design for a retrospective territory-wide cohort of 1,456,618 records from 364,863 unique older adults (age ≥65 years) with diabetes and at least 1 Hong Kong Hospital Authority attendance from 2013 to 2018. We used 258 predictors including demographics, admissions, diagnoses, medications, and routine laboratory tests in a one-year period to predict SH events requiring hospitalization in the following 12 months. The cohort was randomly split into training, testing, and internal validation sets in a 7:2:1 ratio. Six ML algorithms were evaluated including logistic-regression, random forest, gradient boost machine, deep neural network (DNN), XGBoost, and Rulefit. We tested our model in a temporal validation cohort in the Hong Kong Diabetes Register with predictors defined in 2018 and outcome events defined in 2019. Predictive performance was assessed using area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC) statistics, and positive predictive value (PPV). We identified 11,128 SH events requiring hospitalization during the observation periods. The XGBoost model yielded the best performance (AUROC = 0.978 [95% CI 0.972 to 0.984]; AUPRC = 0.670 [95% CI 0.652 to 0.688]; PPV = 0.721 [95% CI 0.703 to 0.739]). This was superior to an 11-variable conventional logistic-regression model comprised of age, sex, history of SH, hypertension, blood glucose, kidney function measurements, and use of oral glucose-lowering drugs (GLDs) (AUROC = 0.906; AUPRC = 0.085; PPV = 0.468). Top impactful predictors included non-use of lipid-regulating drugs, in-patient admission, urgent emergency triage, insulin use, and history of SH. External validation in the HKDR cohort yielded AUROC of 0.856 [95% CI 0.838 to 0.873]. Main limitations of this study included limited transportability of the model and lack of geographically independent validation.

CONCLUSIONS

Our novel-ML model demonstrated good discrimination and high precision in predicting one-year risk of SH requiring hospitalization. This may be integrated into EHR decision support systems for preemptive intervention in older adults at highest risk.

摘要

背景

患有糖尿病的老年人有发生严重低血糖(SH)的高风险。许多机器学习(ML)模型预测短期低血糖的能力对于老年人并不特异,并且准确性和召回率都较差。我们旨在开发一种多维的、基于电子健康记录(EHR)的 ML 模型,以预测老年人糖尿病患者未来 1 年内需要住院治疗的 SH 风险。

方法和发现

我们采用病例对照设计,对来自 2013 年至 2018 年 364863 名年龄≥65 岁且至少有 1 次参加香港医管局就诊记录的独特老年人(糖尿病患者)的 1456618 份记录进行了回顾性全港范围队列研究。我们使用了包括人口统计学、住院、诊断、药物和常规实验室检查在内的 258 个预测因素,以预测未来 12 个月内需要住院治疗的 SH 事件。该队列按照 7:2:1 的比例随机分为训练集、测试集和内部验证集。我们评估了包括逻辑回归、随机森林、梯度提升机、深度神经网络(DNN)、XGBoost 和 Rulefit 在内的 6 种 ML 算法。我们在香港糖尿病登记处的时间验证队列中测试了我们的模型,该队列的预测因素定义在 2018 年,结局事件定义在 2019 年。使用接受者操作特征曲线下的面积(AUROC)、精度-召回曲线下的面积(AUPRC)统计量和阳性预测值(PPV)来评估预测性能。我们在观察期间确定了 11128 例需要住院治疗的 SH 事件。XGBoost 模型的表现最佳(AUROC = 0.978[95%CI 0.972 至 0.984];AUPRC = 0.670[95%CI 0.652 至 0.688];PPV = 0.721[95%CI 0.703 至 0.739]),优于包含年龄、性别、SH 病史、高血压、血糖、肾功能测量和口服降糖药(GLD)使用情况的 11 个变量的传统逻辑回归模型(AUROC = 0.906;AUPRC = 0.085;PPV = 0.468)。最重要的预测因素包括不使用调脂药物、住院、紧急急诊分诊、使用胰岛素和 SH 病史。在香港糖尿病登记处的外部验证中,AUROC 为 0.856[95%CI 0.838 至 0.873]。本研究的主要局限性包括模型的可转移性有限和缺乏地理位置上独立的验证。

结论

我们的新型 ML 模型在预测需要住院治疗的 SH 风险方面具有良好的区分度和高精度。这可能会被整合到 EHR 决策支持系统中,以便对风险最高的老年人进行预防性干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3115/11014435/69333d845220/pmed.1004369.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验