Suppr超能文献

关于有机太阳能电池中电荷转移态动力学与强还原双分子复合的实验证据

Experimental Evidence Relating Charge-Transfer-State Kinetics and Strongly Reduced Bimolecular Recombination in Organic Solar Cells.

作者信息

Zarrabi Nasim, Sandberg Oskar J, Kaiser Christina, Subbiah Jegadesan, Jones David J, Meredith Paul, Armin Ardalan

机构信息

Sustainable Advanced Materials (Ser-SAM), Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom.

Bio21 Institute and School of Chemistry, University of Melbourne, Parkville 3010, Australia.

出版信息

J Phys Chem Lett. 2020 Dec 17;11(24):10519-10525. doi: 10.1021/acs.jpclett.0c02905. Epub 2020 Dec 8.

Abstract

Significantly reduced bimolecular recombination relative to the Langevin recombination rate has been observed in a limited number of donor-acceptor organic semiconductor blends. The strongly reduced recombination has been previously attributed to a high probability for the interfacial charge-transfer (CT) states (formed upon charge encounter) to dissociate back to free charges. However, whether the reduced recombination is due to a suppressed CT-state decay rate or an improved dissociation rate has remained a matter of conjecture. Here we investigate a donor-acceptor material system that exhibits significantly reduced recombination upon solvent annealing. On the basis of detailed balance analysis and the accurate characterization of CT-state parameters, we provide experimental evidence that an increase in the dissociation rate of CT states upon solvent annealing is responsible for the reduced recombination. We attribute this to the presence of purer and more percolated domains in the solvent-annealed system, which may, therefore, have a stronger entropic driving force for CT dissociation.

摘要

在有限数量的供体-受体有机半导体共混物中,已观察到相对于朗之万复合率而言,双分子复合显著降低。此前,这种强烈降低的复合被归因于界面电荷转移(CT)态(电荷相遇时形成)解离回自由电荷的概率很高。然而,复合降低是由于CT态衰减率受到抑制还是解离率提高,一直存在猜测。在这里,我们研究了一种供体-受体材料体系,该体系在溶剂退火后表现出显著降低的复合。基于详细的平衡分析和CT态参数的精确表征,我们提供了实验证据,表明溶剂退火后CT态解离率的增加是复合降低的原因。我们将此归因于溶剂退火体系中存在更纯净且更具连通性的区域,因此,这可能对CT解离具有更强的熵驱动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验