Suppr超能文献

用于有机太阳能电池的迁移率相关复合模型。

Mobility dependent recombination models for organic solar cells.

作者信息

Wagenpfahl Alexander

机构信息

Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany.

出版信息

J Phys Condens Matter. 2017 Sep 20;29(37):373001. doi: 10.1088/1361-648X/aa7952. Epub 2017 Jun 14.

Abstract

Modern solar cell technologies are driven by the effort to enhance power conversion efficiencies. A main mechanism limiting power conversion efficiencies is charge carrier recombination which is a direct function of the encounter probability of both recombination partners. In inorganic solar cells with rather high charge carrier mobilities, charge carrier recombination is often dominated by energetic states which subsequently trap both recombination partners for recombination. Free charge carriers move fast enough for Coulomb attraction to be irrelevant for the encounter probability. Thus, charge carrier recombination is independent of charge carrier mobilities. In organic semiconductors charge carrier mobilities are much lower. Therefore, electrons and holes have more time react to mutual Coulomb-forces. This results in the strong charge carrier mobility dependencies of the observed charge carrier recombination rates. In 1903 Paul Langevin published a fundamental model to describe the recombination of ions in gas-phase or aqueous solutions, known today as Langevin recombination. During the last decades this model was used to interpret and model recombination in organic semiconductors. However, certain experiments especially with bulk-heterojunction solar cells reveal much lower recombination rates than predicted by Langevin. In search of an explanation, many material and device properties such as morphology and energetic properties have been examined in order to extend the validity of the Langevin model. A key argument for most of these extended models is, that electron and hole must find each other at a mutual spatial location. This encounter may be limited for instance by trapping of charges in trap states, by selective electrodes separating electrons and holes, or simply by the morphology of the involved semiconductors, making it impossible for electrons and holes to recombine at high rates. In this review, we discuss the development of mobility limited recombination models from the early Langevin theory to state-of-the art models for charge carrier recombination in organic solar cells.

摘要

现代太阳能电池技术的发展动力在于提高功率转换效率。限制功率转换效率的一个主要机制是电荷载流子复合,它直接取决于两个复合伙伴的相遇概率。在电荷载流子迁移率相当高的无机太阳能电池中,电荷载流子复合通常由高能态主导,这些高能态随后会捕获两个复合伙伴以进行复合。自由电荷载流子移动速度足够快,以至于库仑吸引力对相遇概率无关紧要。因此,电荷载流子复合与电荷载流子迁移率无关。在有机半导体中,电荷载流子迁移率要低得多。因此,电子和空穴有更多时间对相互的库仑力做出反应。这导致观察到的电荷载流子复合速率强烈依赖于电荷载流子迁移率。1903年,保罗·朗之万发表了一个基本模型来描述气相或水溶液中离子的复合,即如今所知的朗之万复合。在过去几十年里,这个模型被用于解释和模拟有机半导体中的复合。然而,某些实验,特别是对体异质结太阳能电池的实验,揭示出的复合速率比朗之万模型预测的要低得多。为了寻找解释,人们研究了许多材料和器件特性,如形态和能量特性,以扩展朗之万模型的有效性。这些扩展模型中的一个关键论点是,电子和空穴必须在相互的空间位置找到对方。这种相遇可能会受到限制,例如通过电荷在陷阱态中的捕获、通过分离电子和空穴的选择性电极,或者仅仅是由于所涉及半导体的形态,使得电子和空穴无法以高速复合。在这篇综述中,我们讨论了从早期的朗之万理论到有机太阳能电池中电荷载流子复合的最新模型的迁移率限制复合模型的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验