Suppr超能文献

立体相互作用诱导的活性丝阵中的同步振荡、传播波和堵塞簇。

Synchronized oscillations, traveling waves, and jammed clusters induced by steric interactions in active filament arrays.

机构信息

Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.

出版信息

Soft Matter. 2021 Jan 28;17(4):1091-1104. doi: 10.1039/d0sm01162b. Epub 2020 Dec 8.

Abstract

Autonomous active, elastic filaments that interact with each other to achieve cooperation and synchrony underlie many critical functions in biology. The mechanisms underlying this collective response and the essential ingredients for stable synchronization remain a mystery. Inspired by how these biological entities integrate elasticity with molecular motor activity to generate sustained oscillations, a number of synthetic active filament systems have been developed that mimic oscillations of these biological active filaments. Here, we describe the collective dynamics and stable spatiotemporal patterns that emerge in such biomimetic multi-filament arrays, under conditions where steric interactions may impact or dominate the collective dynamics. To focus on the role of steric interactions, we study the system using Brownian dynamics, without considering long-ranged hydrodynamic interactions. The simulations treat each filament as a connected chain of self-propelling colloids. We demonstrate that short-range steric inter-filament interactions and filament roughness are sufficient - even in the absence of inter-filament hydrodynamic interactions - to generate a rich variety of collective spatiotemporal oscillatory, traveling and static patterns. We first analyze the collective dynamics of two- and three-filament clusters and identify parameter ranges in which steric interactions lead to synchronized oscillations and strongly occluded states. Generalizing these results to large one-dimensional arrays, we find rich emergent behaviors, including traveling metachronal waves, and modulated wavetrains that are controlled by the interplay between the array geometry, filament activity, and filament elasticity. Interestingly, the existence of metachronal waves is non-monotonic with respect to the inter-filament spacing. We also find that the degree of filament roughness significantly affects the dynamics - specifically, filament roughness generates a locking-mechanism that transforms traveling wave patterns into statically stuck and jammed configurations. Taken together, simulations suggest that short-ranged steric inter-filament interactions could combine with complementary hydrodynamic interactions to control the development and regulation of oscillatory collective patterns. Furthermore, roughness and steric interactions may be critical to the development of jammed spatially periodic states; a spatiotemporal feature not observed in purely hydrodynamically interacting systems.

摘要

自主的、活跃的弹性纤维相互作用,在生物学中为许多关键功能提供合作和同步的基础。这种集体响应的机制以及稳定同步的基本要素仍然是一个谜。受这些生物实体如何将弹性与分子马达活性相结合以产生持续振荡的启发,已经开发了许多合成的主动纤维系统,这些系统模拟了这些生物活性纤维的振荡。在这里,我们描述了在这种仿生多纤维阵列中出现的集体动力学和稳定的时空模式,在这些条件下,空间相互作用可能会影响或主导集体动力学。为了专注于空间相互作用的作用,我们使用布朗动力学研究该系统,而不考虑长程流体动力学相互作用。模拟将每个纤维视为自推进胶体的连接链。我们证明,短程空间相互作用和纤维粗糙度足以产生丰富多样的集体时空振荡、传播和静态模式,即使没有纤维间流体动力学相互作用也是如此。我们首先分析了两维和三维纤维簇的集体动力学,并确定了空间相互作用导致同步振荡和强烈遮挡状态的参数范围。将这些结果推广到大型一维阵列中,我们发现了丰富的涌现行为,包括传播的同步波和调制的波列,这些行为由阵列几何形状、纤维活性和纤维弹性的相互作用控制。有趣的是,同步波的存在与纤维间间距呈非单调关系。我们还发现纤维粗糙度对动力学有显著影响 - 具体来说,纤维粗糙度产生了一种锁定机制,将传播波模式转换为静态卡住和堵塞配置。总的来说,模拟表明短程空间相互作用可以与互补的流体动力学相互作用结合,以控制振荡集体模式的发展和调节。此外,粗糙度和空间相互作用对于发展卡住的空间周期性状态可能是至关重要的;这是在纯流体相互作用系统中观察不到的时空特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验