Suppr超能文献

受软斥力和刚度调节的驱动半柔性细丝的集体运动。

Collective motion of driven semiflexible filaments tuned by soft repulsion and stiffness.

机构信息

Department of Physics, University of Colorado, Boulder, CO 80309, USA.

出版信息

Soft Matter. 2020 Oct 28;16(41):9436-9442. doi: 10.1039/d0sm01036g.

Abstract

In active matter systems, self-propelled particles can self-organize to undergo collective motion, leading to persistent dynamical behavior out of equilibrium. In cells, cytoskeletal filaments and motor proteins form complex structures important for cell mechanics, motility, and division. Collective dynamics of cytoskeletal systems can be reconstituted using filament gliding experiments, in which cytoskeletal filaments are propelled by surface-bound motor proteins. These experiments have observed diverse dynamical states, including flocks, polar streams, swirling vortices, and single-filament spirals. Recent experiments with microtubules and kinesin motor proteins found that the collective behavior of gliding filaments can be tuned by altering the concentration of the crowding macromolecule methylcellulose in solution. Increasing the methylcellulose concentration reduced filament crossing, promoted alignment, and led to a transition from active, isotropically oriented filaments to locally aligned polar streams. This emergence of collective motion is typically explained as an increase in alignment interactions by Vicsek-type models of active polar particles. However, it is not yet understood how steric interactions and bending stiffness modify the collective behavior of active semiflexible filaments. Here we use simulations of driven filaments with tunable soft repulsion and rigidity in order to better understand how the interplay between filament flexibility and steric effects can lead to different active dynamic states. We find that increasing filament stiffness decreases the probability of filament alignment, yet increases collective motion and long-range order, in contrast to the assumptions of a Vicsek-type model. We identify swirling flocks, polar streams, buckling bands, and spirals, and describe the physics that govern transitions between these states. In addition to repulsion and driving, tuning filament stiffness can promote collective behavior, and controls the transition between active isotropic filaments, locally aligned flocks, and polar streams.

摘要

在活性物质系统中,自行推进的粒子可以自我组织,从而发生集体运动,导致非平衡状态下的持续动力学行为。在细胞中,细胞骨架丝和马达蛋白形成了对细胞力学、运动和分裂很重要的复杂结构。使用丝状滑行实验可以重建细胞骨架系统的集体动力学,在该实验中,表面结合的马达蛋白推动细胞骨架丝。这些实验观察到了多种动态状态,包括群体、极性流、漩涡和单丝螺旋。最近使用微管和驱动蛋白马达的实验发现,通过改变溶液中拥挤大分子甲基纤维素的浓度,可以调节滑行丝状的集体行为。增加甲基纤维素浓度会减少丝状交叉,促进对齐,并导致从活性、各向同性取向的丝状到局部对齐的极性流的转变。这种集体运动的出现通常可以通过活性极粒子的 Vicsek 型模型来解释为对齐相互作用的增加。然而,目前还不清楚空间相互作用和弯曲刚度如何改变活性半柔性丝状的集体行为。在这里,我们使用具有可调软排斥和刚性的驱动丝状的模拟,以便更好地理解丝状柔韧性和空间相互作用之间的相互作用如何导致不同的活性动态状态。我们发现,增加丝状的刚度会降低丝状对齐的概率,但会增加集体运动和长程有序,这与 Vicsek 型模型的假设相反。我们发现了漩涡群、极性流、弯曲带和螺旋,并描述了控制这些状态之间转变的物理原理。除了排斥和驱动之外,调节丝状的刚度也可以促进集体行为,并控制活性各向同性丝状、局部对齐的丝状群和极性流之间的转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验