Ossetrova Natalia I, Stanton Paul, Krasnopolsky Katya, Ismail Mohammed, Doreswamy Arpitha, Hieber Kevin P
1Uniformed Services University, Armed Forces Radiobiology Research Institute, Scientific Research Department, 4555 South Palmer Road Bethesda, MD 20889-5648.
Health Phys. 2018 Dec;115(6):743-759. doi: 10.1097/HP.0000000000000939.
The detonation of a nuclear weapon and the occurrence of a nuclear accident represent possible mass-casualty events with significant exposure to mixed neutron and gamma radiation fields in the first few minutes after the event with the ensuing fallout, extending for miles from the epicenter, that would result primarily in photon (gamma- and/or x-ray) exposure. Circulating biomarkers represent a crucial source of information in a mass-casualty radiation exposure triage scenario. We evaluated multiple blood biodosimetry and organ-specific biomarkers for early-response assessment of radiation exposure using a mouse (B6D2F1, males and females) total-body irradiation model exposed to Co gamma rays over a broad dose range (3-12 Gy) and dose rates of either 0.6 or 1.9 Gy min and compared the results with those obtained after exposure of mice to a mixed field (neutrons and gamma rays) using the Armed Forces Radiobiology Research Institute Co gamma-ray source and TRIGA Mark F nuclear research reactor. The mixed-field studies were performed previously over a broad dose range (1.5-6 Gy), with dose rates of either 0.6 or 1.9 Gy min, and using different proportions of neutrons and gammas: either (67% neutrons + 33% gammas) or (30% neutrons + 70% gammas). Blood was collected 1, 2, 4, and 7 d after total-body irradiation. Results from Co gamma-ray studies demonstrate: (1) significant dose- and time-dependent reductions in circulating mature hematopoietic cells; (2) dose- and time-dependent changes in fms-related tyrosine kinase 3 ligand, interleukins IL-5, IL-10, IL-12, and IL-18, granulocyte colony-stimulating factors, thrombopoietin, erythropoietin, acute-phase proteins (serum amyloid A and lipopolysaccharide binding protein), surface plasma neutrophil (CD45) and lymphocyte (CD27) markers, ratio of CD45 to CD27, procalcitonin but not in intestinal fatty acid binding protein; (3) no significant differences were observed between dose-rate groups in hematological and protein profiles (fms-related tyrosine kinase 3 ligand, IL-5, IL-12, IL-18, erythropoietin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, CD27, CD45, and ratio of CD45 to CD27) for any radiation dose at any time after exposure (p > 0.148); (4) no significant differences were observed between sex groups in hematological and protein profiles (fms-related tyrosine kinase 3 ligand, IL-18, erythropoietin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, serum amyloid A, CD45) for any radiation dose at any time after exposure (p > 0.114); and (5) PCT level significantly increased (p < 0.008) in mice irradiated with 12 Gy on day 7 post-total-body irradiation without significant differences between groups irradiated at dose rates of either 0.6 or 1.9 Gy min (p > 0.287). Radiation-quality comparison results demonstrate that: (1) equivalent doses of pure gamma rays and mixed-field radiation do not produce equivalent biological effects, and hematopoietic syndrome occurs at lower doses of mixed-field radiation; (2) ratios of hematological and protein biomarker means in the Co study compared to mixed-field studies using 2× Co doses vs. 1× TRIGA radiation doses (i.e., 3 Gy Co vs. 1.5 Gy TRIGA) ranged from roughly 0.2 to as high as 26.5 but 57% of all ratios fell within 0.7 and 1.3; and (3) in general, biomarker results are in agreement with the relative biological effectiveness = 1.95 (Dn/Dt = 0.67) reported earlier by Armed Forces Radiobiology Research Institute scientists in mouse survival countermeasure studies.
核武器爆炸和核事故是可能导致大量人员伤亡的事件,在事件发生后的最初几分钟内会使人受到高强度的混合中子和伽马辐射场照射,随后的放射性尘埃会从震中向外扩散数英里,主要导致光子(伽马和/或X射线)照射。在大规模伤亡辐射暴露伤员鉴别分类场景中,循环生物标志物是关键的信息来源。我们使用小鼠(B6D2F1,雄性和雌性)全身照射模型,在广泛的剂量范围(3 - 12 Gy)以及0.6或1.9 Gy/min的剂量率下,用钴伽马射线进行照射,评估了多种血液生物剂量测定和器官特异性生物标志物,以用于辐射暴露的早期反应评估,并将结果与使用武装部队放射生物学研究所钴伽马射线源和TRIGA Mark F核研究反应堆使小鼠暴露于混合场(中子和伽马射线)后获得的结果进行比较。混合场研究先前在广泛的剂量范围(1.5 - 6 Gy)、0.6或1.9 Gy/min的剂量率下进行,且使用不同比例的中子和伽马:即(67%中子 + 33%伽马)或(30%中子 + 70%伽马)。全身照射后1、2、4和7天采集血液。钴伽马射线研究结果表明:(1)循环成熟造血细胞出现显著的剂量和时间依赖性减少;(2)fms相关酪氨酸激酶3配体、白细胞介素IL - 5、IL - 10、IL - 12和IL - 18、粒细胞集落刺激因子、血小板生成素、促红细胞生成素、急性期蛋白(血清淀粉样蛋白A和脂多糖结合蛋白)、表面血浆中性粒细胞(CD45)和淋巴细胞(CD27)标志物、CD45与CD27的比值、降钙素原出现剂量和时间依赖性变化,但肠脂肪酸结合蛋白未出现此类变化;(3)在照射后任何时间,对于任何辐射剂量,剂量率组之间在血液学和蛋白质谱(fms相关酪氨酸激酶3配体、IL - 5、IL - 12、IL - 18、促红细胞生成素、粒细胞集落刺激因子、粒细胞 - 巨噬细胞集落刺激因子、CD27、CD45以及CD45与CD27的比值)方面均未观察到显著差异(p > 0.148);(4)在照射后任何时间,对于任何辐射剂量,性别组之间在血液学和蛋白质谱(fms相关酪氨酸激酶3配体、IL - 18、促红细胞生成素、粒细胞集落刺激因子、粒细胞 - 巨噬细胞集落刺激因子、血清淀粉样蛋白A、CD45)方面均未观察到显著差异(p > 0.114);(5)全身照射后第7天,接受12 Gy照射的小鼠降钙素原水平显著升高(p < 0.008),剂量率为0.6或1.9 Gy/min的照射组之间无显著差异(p > 0.287)。辐射质量比较结果表明:(1)等效剂量的纯伽马射线和混合场辐射不会产生等效的生物学效应,造血综合征在较低剂量的混合场辐射下就会出现;(2)在钴研究中血液学和蛋白质生物标志物平均值与混合场研究(使用2倍钴剂量与1倍TRIGA辐射剂量,即3 Gy钴与1.5 Gy TRIGA)的比值范围大致为0.2至高达26.5,但所有比值的57%落在0.7和l.3之间;(3)总体而言,生物标志物结果与武装部队放射生物学研究所科学家先前在小鼠生存对策研究中报告的相对生物效能 = 1.95(Dn/Dt = 0.67)一致。