Jones Steven, Andrén Daniel, Antosiewicz Tomasz J, Stilgoe Alexander, Rubinsztein-Dunlop Halina, Käll Mikael
Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
ACS Nano. 2020 Dec 22;14(12):17468-17475. doi: 10.1021/acsnano.0c07763. Epub 2020 Dec 8.
The challenge of inducing and controlling localized fluid flows for generic force actuation and for achieving efficient mass transport in microfluidics is key to the development of next-generation miniaturized systems for chemistry and life sciences. Here we demonstrate a methodology for the robust generation and precise quantification of extremely strong flow transients driven by vapor bubble nucleation on spatially isolated plasmonic nanoantennas excited by light. The system is capable of producing peak flow speeds of the order mm/s at modulation rates up to ∼100 Hz in water, thus allowing for a variety of high-throughput applications. Analysis of flow dynamics and fluid viscosity dependence indicates that the transient originates in the rapid bubble expansion that follows nucleation rather than being strictly thermocapillary in nature.
在微流体中诱导和控制局部流体流动以实现通用力驱动和高效质量传输,这一挑战是下一代化学和生命科学小型化系统发展的关键。在此,我们展示了一种方法,可通过光激发空间隔离的等离子体纳米天线产生蒸汽泡成核,从而稳健地产生并精确量化极强的流动瞬变。该系统能够在水中以高达约100 Hz的调制速率产生毫米/秒量级的峰值流速,从而实现各种高通量应用。对流动动力学和流体粘度依赖性的分析表明,瞬变源于成核后气泡的快速膨胀,而非严格意义上的热毛细作用。