Suppr超能文献

应用 Kaiser 评分提高诊断性乳房 X 线摄影术检查后转诊行磁共振乳腺成像检查的可疑病变的诊断准确性。

Application of the Kaiser score to increase diagnostic accuracy in equivocal lesions on diagnostic mammograms referred for MR mammography.

机构信息

Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India.

Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India.

出版信息

Eur J Radiol. 2021 Jan;134:109413. doi: 10.1016/j.ejrad.2020.109413. Epub 2020 Nov 30.

Abstract

INTRODUCTION

We aimed to interpret MR mammography (MRM) using the Kaiser scores for equivocal or inconclusive lesions on mammography (MG).

METHODS

Retrospective IRB-approved evaluation of 3623 MG for which MRM was deployed as a problem-solving tool, after inclusion-exclusion criteria were met. Three readers with different levels of experience assigned a final score from 1 to 11 based on the previously established tree classification system. Area under the curve (AUC) derived from receiver operating characteristic (ROC) analysis was used to determine the overall diagnostic performance for all lesions and separately for mass and non-mass enhancement. Sensitivity, specificity, and likelihood ratio values were obtained at different cut-off values of >4, > 5, and > 8 to rule in and rule out malignancy.

RESULT

Histopathology of 183 mass and 133 non-mass enhancement (NME) lesions show benign etiology in 95 and malignant in 221. The AUC was 0.796 [0.851 for mass and 0.715 for NME]. Applying the Kaiser score upgraded 202 lesions with correct prediction in 77 %, and downgraded 28 lesions with correct prediction in 60.8 %. Using a score <5 instead of <4 to rule out malignancy improved our diagnostic ability to correctly identify 100 % benign lesions. Applying Kaiser score correctly downgraded 60.8 % (17/28) lesions; thus avoiding biopsies in these. Using a high cut-off value>8 to rule-in malignancy, we correctly identified 59.7 % of lesions with 80 % specificity and positive likelihood ratio of 3.

CONCLUSION

The Kaiser score has clinical translation benefits when used as a problem-solving tool for inconclusive MG findings.

摘要

简介

本研究旨在通过凯萨尔评分(Kaiser score)解读乳腺磁共振成像(MRM)对于乳腺 X 线摄影(MG)中不确定或不明确病变的诊断。

方法

本研究为回顾性 IRB 批准的研究,纳入了符合纳入排除标准的 3623 例 MG 患者,这些患者在使用 MG 作为解决问题的工具后,均进一步行 MRM 检查。三位具有不同经验水平的读者根据先前建立的树状分类系统,对每个病变进行 1 到 11 分的最终评分。通过接收者操作特性(ROC)分析得出曲线下面积(AUC),用于评估所有病变的整体诊断性能,并分别评估肿块和非肿块样强化病变的诊断性能。在不同的截断值(>4、>5 和>8)下,获得了灵敏度、特异性和似然比,以确定良恶性。

结果

183 个肿块和 133 个非肿块样强化(NME)病变的组织病理学结果显示,良性病变 95 例,恶性病变 221 例。AUC 为 0.796(肿块为 0.851,NME 为 0.715)。应用凯萨尔评分将 202 个病变的预测结果升级,正确预测率为 77%,降级 28 个病变的预测结果正确预测率为 60.8%。与采用<4 分作为截断值相比,采用<5 分作为截断值排除恶性病变,可使我们正确识别出 100%的良性病变。应用凯萨尔评分正确降级了 60.8%(17/28)的病变,从而避免了对这些病变进行活检。采用高截断值>8 分来确定恶性病变,可正确识别出 59.7%的病变,特异性为 80%,阳性似然比为 3。

结论

当凯萨尔评分作为不确定 MG 结果的解决方案时,具有临床转化价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验