Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, and International Ph.D. Program in Interdisciplinary Neuroscience, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan.
J Neural Eng. 2021 Feb 23;18(1). doi: 10.1088/1741-2552/abd1c0.
Brain-computer Interface (BCI) is actively involved in optimizing the communication medium between the human brain and external devices.Rapid serial visual presentation (RSVP) is a robust and highly efficient BCI technique in recognizing target objects but suffers from limited target selections. Hybrid BCI systems that combine steady-state visual evoked potential (SSVEP) and RSVP can mitigate this limitation and allow users to operate on multiple targets.This study proposes a novel hybrid SSVEP-RSVP BCI to improve the performance of classifying the target/non-target objects in a multi-target scenario. In this paradigm, SSVEP stimulation helps in identifying the user's focus location and RSVP stimuli that elicit event-related potentials differentiate target and non-target objects.The proposed model achieved an offline accuracy of 81.59% by using 12 electroencephalography (EEG) channels and an online (real-time) accuracy of 78.10% when only four EEG channels are considered. Further, the biomarkers of physiological states are analyzed to assess the cognitive states (mental fatigue and user attention) of the participants based on resting theta and alpha band powers. The results indicate an inverse relationship between the BCI performance and the resting EEG power, validating that the subjects' performance is affected by physiological states for long-term use of the BCI.Our findings demonstrate that the combination of SSVEP and RSVP stimuli improves the BCI performance and further enhances the possibility of performing multiple user command tasks, which are inevitable in real-world applications. Additionally, the cognitive state biomarkers discussed imply the need for an efficient and attractive experimental paradigm that reduces the physiological state disparities and provide enhanced BCI performance.
脑机接口(BCI)积极参与优化人类大脑与外部设备之间的通信媒介。快速序列视觉呈现(RSVP)是一种强大且高效的 BCI 技术,可用于识别目标对象,但目标选择有限。结合稳态视觉诱发电位(SSVEP)和 RSVP 的混合 BCI 系统可以缓解这种限制,允许用户操作多个目标。本研究提出了一种新的混合 SSVEP-RSVP BCI,以提高在多目标场景中分类目标/非目标对象的性能。在该范式中,SSVEP 刺激有助于识别用户的焦点位置,而 RSVP 刺激诱发的事件相关电位则可区分目标和非目标对象。该模型使用 12 个脑电图(EEG)通道实现了离线精度 81.59%,而仅考虑四个 EEG 通道时,在线(实时)精度为 78.10%。此外,还分析了生理状态的生物标志物,以根据静息θ和α频段功率评估参与者的认知状态(精神疲劳和用户注意力)。结果表明,BCI 性能与静息 EEG 功率呈反比关系,验证了受试者的表现受到生理状态的影响,这对于长期使用 BCI 是不利的。我们的研究结果表明,SSVEP 和 RSVP 刺激的结合提高了 BCI 的性能,并进一步增强了执行多个用户命令任务的可能性,这在实际应用中是不可避免的。此外,讨论的认知状态生物标志物表明需要一种有效的和有吸引力的实验范式,以减少生理状态的差异并提供增强的 BCI 性能。