文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes-Manganese Dioxide Ternary Composite for Potential Application in Supercapattery.

作者信息

Iqbal Javed, Ansari Mohammad Omaish, Numan Arshid, Wageh S, Al-Ghamdi Ahmed, Alam Mohd Gulfam, Kumar Pramod, Jafer Rashida, Bashir Shahid, Rajpar A H

机构信息

Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

State Key Laboratory of ASIC and System, SIST, Fudan University, Shanghai 200433, China.

出版信息

Polymers (Basel). 2020 Dec 5;12(12):2918. doi: 10.3390/polym12122918.


DOI:10.3390/polym12122918
PMID:33291451
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7762181/
Abstract

In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO composite, coating of PANI over CNT/MnO, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO composite due to the synergistic/additional effect of PANI, CNT and MnO compared to pure MnO, PANI and PANI@CNT. The PANI@CNT/MnO ternary composite exhibited an excellent specific capacity of 143.26 C g at a scan rate of 3 mV s. The cyclic stability of the supercapattery (PANI@CNT/MnO/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/270b33e7fc9d/polymers-12-02918-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/45c6b663fc32/polymers-12-02918-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/970b917f57fb/polymers-12-02918-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/5e158ae10b46/polymers-12-02918-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/01387dabbae4/polymers-12-02918-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/c2ef5dded6ee/polymers-12-02918-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/0de62dea1c08/polymers-12-02918-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/1d7590df3817/polymers-12-02918-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/93e9e4418356/polymers-12-02918-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/270b33e7fc9d/polymers-12-02918-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/45c6b663fc32/polymers-12-02918-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/970b917f57fb/polymers-12-02918-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/5e158ae10b46/polymers-12-02918-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/01387dabbae4/polymers-12-02918-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/c2ef5dded6ee/polymers-12-02918-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/0de62dea1c08/polymers-12-02918-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/1d7590df3817/polymers-12-02918-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/93e9e4418356/polymers-12-02918-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db82/7762181/270b33e7fc9d/polymers-12-02918-g009.jpg

相似文献

[1]
Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes-Manganese Dioxide Ternary Composite for Potential Application in Supercapattery.

Polymers (Basel). 2020-12-5

[2]
Cobalt Oxide Nanograins and Silver Nanoparticles Decorated Fibrous Polyaniline Nanocomposite as Battery-Type Electrode for High Performance Supercapattery.

Polymers (Basel). 2020-11-27

[3]
Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application.

ACS Appl Mater Interfaces. 2017-4-25

[4]
Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.

Nanoscale. 2013-8-21

[5]
Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes.

Phys Chem Chem Phys. 2014-5-7

[6]
Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.

Phys Chem Chem Phys. 2016-4-7

[7]
Preparation and the Electrochemical Performance of MnO2/PANI@CNT Composite for Supercapacitors.

J Nanosci Nanotechnol. 2015-1

[8]
Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors.

Phys Chem Chem Phys. 2015-11-28

[9]
The Controllable Ratio of the Polyaniline-Needle-Shaped Manganese Dioxide for the High-Performance Supercapacitor Application.

Nanomaterials (Basel). 2022-12-25

[10]
Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability.

Nanomaterials (Basel). 2015-6-11

引用本文的文献

[1]
Electrochemical performances of MnO/FeO/activated carbon ternary composites for supercapacitor and direct ethanol fuel cell catalyst application.

RSC Adv. 2025-5-16

[2]
Formation Features of Polymer-Metal-Carbon Ternary Electromagnetic Nanocomposites Based on Polyphenoxazine.

Polymers (Basel). 2023-6-29

[3]
Preparation of MnO-Carbon Materials and Their Applications in Photocatalytic Water Treatment.

Nanomaterials (Basel). 2023-1-29

[4]
Evaluation of the Synergistic Effect of Graphene Oxide Sheets and CoO Wrapped with Vertically Aligned Arrays of Poly (Aniline-Co-Melamine) Nanofibers for Energy Storage Applications.

Polymers (Basel). 2022-6-30

[5]
Synthesis, Characterization and Electrochemical Performance of a Redox-Responsive Polybenzopyrrole@Nickel Oxide Nanocomposite for Robust and Efficient Faraday Energy Storage.

Nanomaterials (Basel). 2022-2-1

[6]
Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films-A Review.

Polymers (Basel). 2021-6-18

本文引用的文献

[1]
Cobalt Oxide Nanograins and Silver Nanoparticles Decorated Fibrous Polyaniline Nanocomposite as Battery-Type Electrode for High Performance Supercapattery.

Polymers (Basel). 2020-11-27

[2]
Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application.

ACS Appl Mater Interfaces. 2017-4-25

[3]
Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles.

Analyst. 2016-7-11

[4]
Facile and Scale Up Synthesis of Red Phosphorus-Graphitic Carbon Nitride Heterostructures for Energy and Environment Applications.

Sci Rep. 2016-6-13

[5]
Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics.

ACS Nano. 2012-8-29

[6]
Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures.

J Phys Chem B. 2005-11-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索