Suppr超能文献

基于机器学习的一线奥沙利铂化疗治疗晚期结直肠癌患者结局预测的临床验证。

Clinical Validation of a Machine-learning-derived Signature Predictive of Outcomes from First-line Oxaliplatin-based Chemotherapy in Advanced Colorectal Cancer.

机构信息

Caris Life Sciences, Phoenix, Arizona.

Departments of Oncology and Translational Research and New Technologies in Medicine, University Hospital Pisa, Pisa, Tuscany, Italy.

出版信息

Clin Cancer Res. 2021 Feb 15;27(4):1174-1183. doi: 10.1158/1078-0432.CCR-20-3286. Epub 2020 Dec 8.

Abstract

PURPOSE

FOLFOX, FOLFIRI, or FOLFOXIRI chemotherapy with bevacizumab is considered standard first-line treatment option for patients with metastatic colorectal cancer (mCRC). We developed and validated a molecular signature predictive of efficacy of oxaliplatin-based chemotherapy combined with bevacizumab in patients with mCRC.

EXPERIMENTAL DESIGN

A machine-learning approach was applied and tested on clinical and next-generation sequencing data from a real-world evidence (RWE) dataset and samples from the prospective TRIBE2 study resulting in identification of a molecular signature, FOLFOX. Algorithm training considered time-to-next treatment (TTNT). Validation studies used TTNT, progression-free survival, and overall survival (OS) as the primary endpoints.

RESULTS

A 67-gene signature was cross-validated in a training cohort ( = 105) which demonstrated the ability of FOLFOX to distinguish FOLFOX-treated patients with mCRC with increased benefit from those with decreased benefit. The signature was predictive of TTNT and OS in an independent RWE dataset of 412 patients who had received FOLFOX/bevacizumab in first line and inversely predictive of survival in RWE data from 55 patients who had received first-line FOLFIRI. Blinded analysis of TRIBE2 samples confirmed that FOLFOX was predictive of OS in both oxaliplatin-containing arms (FOLFOX HR, 0.629; = 0.04 and FOLFOXIRI HR, 0.483; = 0.02). FOLFOX was also predictive of treatment benefit from oxaliplatin-containing regimens in advanced esophageal/gastro-esophageal junction cancers, as well as pancreatic ductal adenocarcinoma.

CONCLUSIONS

Application of FOLFOX could lead to improvements of treatment outcomes for patients with mCRC and other cancers because patients predicted to have less benefit from oxaliplatin-containing regimens might benefit from alternative regimens.

摘要

目的

含奥沙利铂的 FOLFOX、FOLFIRI 或 FOLFOXIRI 化疗联合贝伐珠单抗被认为是转移性结直肠癌(mCRC)患者的标准一线治疗选择。我们开发并验证了一种预测 mCRC 患者奥沙利铂为基础的化疗联合贝伐珠单抗疗效的分子标志物。

实验设计

应用机器学习方法对真实世界证据(RWE)数据集的临床和下一代测序数据以及前瞻性 TRIBE2 研究的样本进行了分析,确定了一个分子标志物,即 FOLFOX。算法训练考虑了下一次治疗的时间(TTNT)。验证研究使用 TTNT、无进展生存期和总生存期(OS)作为主要终点。

结果

在一个包含 105 例患者的训练队列中对 67 个基因的标志物进行了交叉验证,结果表明 FOLFOX 能够区分接受 FOLFOX 治疗的 mCRC 患者,增加了获益患者的比例,降低了获益减少患者的比例。该标志物对接受一线 FOLFOX/贝伐珠单抗治疗的 412 例患者的 TTNT 和 OS 具有预测性,对接受一线 FOLFIRI 治疗的 55 例患者的 RWE 数据具有相反的生存预测性。对 TRIBE2 样本的盲法分析证实,FOLFOX 对含奥沙利铂的两个臂的 OS 均具有预测性(FOLFOX HR,0.629;P=0.04;FOLFOXIRI HR,0.483;P=0.02)。FOLFOX 还对晚期食管/胃食管交界处癌和胰腺导管腺癌中含奥沙利铂方案的治疗获益具有预测性。

结论

应用 FOLFOX 可能会改善 mCRC 和其他癌症患者的治疗效果,因为那些预测从含奥沙利铂方案中获益较少的患者可能会从其他方案中获益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验