Suppr超能文献

通过深度学习从图像预测多孔介质的孔隙率、渗透率和迂曲度。

Predicting porosity, permeability, and tortuosity of porous media from images by deep learning.

机构信息

Institute of Theoretical Physics, Faculty of Physics and Astronomy, University of Wrocław, pl. M. Borna 9, 50-204, Wrocław, Poland.

出版信息

Sci Rep. 2020 Dec 8;10(1):21488. doi: 10.1038/s41598-020-78415-x.

Abstract

Convolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ([Formula: see text]), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered. The fluid flow through a porous medium is simulated with the lattice Boltzmann method. The analysis has been performed for the systems with [Formula: see text] which covers five orders of magnitude a span for permeability [Formula: see text] and tortuosity [Formula: see text]. It is shown that the CNNs can be used to predict the porosity, permeability, and tortuosity with good accuracy. With the usage of the CNN models, the relation between T and [Formula: see text] has been obtained and compared with the empirical estimate.

摘要

卷积神经网络(CNN)用于编码障碍物初始构型与多孔介质中三个基本量之间的关系:孔隙度 ([Formula: see text])、渗透率 (k) 和迂曲度 (T)。考虑二维含障碍物系统。使用晶格玻尔兹曼方法模拟多孔介质中的流体流动。分析涵盖了渗透率 [Formula: see text] 和迂曲度 [Formula: see text] 的五个数量级跨度的 [Formula: see text] 系统。结果表明,CNN 可用于准确预测孔隙度、渗透率和迂曲度。通过使用 CNN 模型,获得了 T 与 [Formula: see text] 之间的关系,并与经验估计进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c0b/7722859/097a95d63631/41598_2020_78415_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验