Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea.
Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 43 Olympic-ro 88, Songpa-Gu, Seoul, Korea.
Sci Rep. 2020 Dec 8;10(1):21485. doi: 10.1038/s41598-020-78485-x.
Current image processing methods for dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) do not capture complex dynamic information of time-signal intensity curves. We investigated whether an autoencoder-based pattern analysis of DSC MRI captured representative temporal features that improves tissue characterization and tumor diagnosis in a multicenter setting. The autoencoder was applied to the time-signal intensity curves to obtain representative temporal patterns, which were subsequently learned by a convolutional neural network. This network was trained with 216 preoperative DSC MRI acquisitions and validated using external data (n = 43) collected with different DSC acquisition protocols. The autoencoder applied to time-signal intensity curves and clustering obtained nine representative clusters of temporal patterns, which accurately identified tumor and non-tumoral tissues. The dominant clusters of temporal patterns distinguished primary central nervous system lymphoma (PCNSL) from glioblastoma (AUC 0.89) and metastasis from glioblastoma (AUC 0.95). The autoencoder captured DSC time-signal intensity patterns that improved identification of tumoral tissues and differentiation of tumor type and was generalizable across centers.
当前的动态磁敏感对比(DSC)磁共振成像(MRI)图像处理方法无法捕捉时间信号强度曲线的复杂动态信息。我们研究了基于自动编码器的 DSC MRI 模式分析是否可以捕获代表性的时间特征,从而改善多中心环境中的组织特征描述和肿瘤诊断。自动编码器应用于时间信号强度曲线以获得代表性的时间模式,随后由卷积神经网络进行学习。该网络使用 216 项术前 DSC MRI 采集进行训练,并使用不同 DSC 采集协议采集的外部数据(n=43)进行验证。自动编码器应用于时间信号强度曲线和聚类,获得了 9 个具有代表性的时间模式聚类,可以准确识别肿瘤和非肿瘤组织。时间模式的主要聚类可以区分原发性中枢神经系统淋巴瘤(PCNSL)和胶质母细胞瘤(AUC 0.89),以及转移瘤和胶质母细胞瘤(AUC 0.95)。自动编码器捕获了 DSC 时间信号强度模式,可以提高肿瘤组织的识别能力,并区分肿瘤类型,而且可以在不同中心之间推广。