Suppr超能文献

基于自动编码器的深度学习时-信号强度模式分析可捕获脑肿瘤分级的磁共振灌注异质性。

Deep-learned time-signal intensity pattern analysis using an autoencoder captures magnetic resonance perfusion heterogeneity for brain tumor differentiation.

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea.

Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 43 Olympic-ro 88, Songpa-Gu, Seoul, Korea.

出版信息

Sci Rep. 2020 Dec 8;10(1):21485. doi: 10.1038/s41598-020-78485-x.

Abstract

Current image processing methods for dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) do not capture complex dynamic information of time-signal intensity curves. We investigated whether an autoencoder-based pattern analysis of DSC MRI captured representative temporal features that improves tissue characterization and tumor diagnosis in a multicenter setting. The autoencoder was applied to the time-signal intensity curves to obtain representative temporal patterns, which were subsequently learned by a convolutional neural network. This network was trained with 216 preoperative DSC MRI acquisitions and validated using external data (n = 43) collected with different DSC acquisition protocols. The autoencoder applied to time-signal intensity curves and clustering obtained nine representative clusters of temporal patterns, which accurately identified tumor and non-tumoral tissues. The dominant clusters of temporal patterns distinguished primary central nervous system lymphoma (PCNSL) from glioblastoma (AUC 0.89) and metastasis from glioblastoma (AUC 0.95). The autoencoder captured DSC time-signal intensity patterns that improved identification of tumoral tissues and differentiation of tumor type and was generalizable across centers.

摘要

当前的动态磁敏感对比(DSC)磁共振成像(MRI)图像处理方法无法捕捉时间信号强度曲线的复杂动态信息。我们研究了基于自动编码器的 DSC MRI 模式分析是否可以捕获代表性的时间特征,从而改善多中心环境中的组织特征描述和肿瘤诊断。自动编码器应用于时间信号强度曲线以获得代表性的时间模式,随后由卷积神经网络进行学习。该网络使用 216 项术前 DSC MRI 采集进行训练,并使用不同 DSC 采集协议采集的外部数据(n=43)进行验证。自动编码器应用于时间信号强度曲线和聚类,获得了 9 个具有代表性的时间模式聚类,可以准确识别肿瘤和非肿瘤组织。时间模式的主要聚类可以区分原发性中枢神经系统淋巴瘤(PCNSL)和胶质母细胞瘤(AUC 0.89),以及转移瘤和胶质母细胞瘤(AUC 0.95)。自动编码器捕获了 DSC 时间信号强度模式,可以提高肿瘤组织的识别能力,并区分肿瘤类型,而且可以在不同中心之间推广。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f343/7723041/a331763a1f4f/41598_2020_78485_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验