Suppr超能文献

一种新型混合单平面椎弓根螺钉系统及其在微创脊柱固定中的应用:有限元分析。

A Hybrid Uniplanar Pedicle Screw System with a New Intermediate Screw for Minimally Invasive Spinal Fixation: A Finite Element Analysis.

机构信息

Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China.

National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China.

出版信息

Biomed Res Int. 2020 Nov 18;2020:5497030. doi: 10.1155/2020/5497030. eCollection 2020.

Abstract

PURPOSE

A hybrid pedicle screw system for minimally invasive spinal fixation was developed based on the uniplanar pedicle screw construct and a new intermediate screw. Its biomechanical performance was evaluated using finite element (FE) analysis.

METHODS

A T12-L2 FE model was established to simulate the L1 vertebral compression fracture with Magerl classification A1.2. Six fixation models were developed to simulate the posterior pedicle screw fracture fixation, which were divided into two subgroups with different construct configurations: (1) six-monoaxial/uniplanar/polyaxial pedicle screw constructs and (2) four-monoaxial/uniplanar/polyaxial pedicle screw constructs with the new intermediate screw. After model validation, flexion, extension, lateral bending, and axial rotation with 7.5 Nm moments and preloading of 500 N vertical compression were applied to the FE models to compare the biomechanical performances of the six fixation models with maximum von Mises stress, range of motion, and maximum displacement of the vertebra.

RESULTS

Under four loading scenarios, the maximum von Mises stresses were found to be at the roots of the upper or lower pedicle screws. In the cases of flexion, lateral bending, and axial rotation, the maximum von Mises stress of the uniplanar screw construct lay in between the monoaxial and polyaxial screw constructs in each subgroup. Considering lateral bending, the uniplanar screw construct enabled to lower the maximum von Mises stress than monoaxial and polyaxial pedicle screw constructs in each subgroup. Two subgroups showed comparable results of the maximum von Mises stress on the endplates, range of motion of T12-L1, and maximum displacement of T12 between the corresponding constructs with the new intermediate screw or not.

CONCLUSIONS

The observations shown in this study verified that the hybrid uniplanar pedicle screw system exhibited comparable biomechanical performance as compared with other posterior short-segment constructs. The potential advantage of this new fixation system may provide researchers and clinical practitioners an alternative for minimally invasive spinal fixation with vertebral augmentation.

摘要

目的

基于单平面椎弓根螺钉结构和新型中间螺钉,开发了一种用于微创脊柱固定的混合椎弓根螺钉系统。使用有限元(FE)分析对其生物力学性能进行了评估。

方法

建立 T12-L2 FE 模型以模拟 Magerl 分类 A1.2 的 L1 椎体压缩性骨折。开发了六种固定模型来模拟后路椎弓根螺钉骨折固定,这些模型分为两种具有不同结构配置的亚组:(1)六轴/单平面/多轴椎弓根螺钉结构和(2)具有新型中间螺钉的四轴/单平面/多轴椎弓根螺钉结构。在模型验证后,对 FE 模型施加 7.5 Nm 弯矩和 500 N 垂直压缩预载,进行屈伸、侧屈、轴向旋转,并比较六种固定模型的最大 von Mises 应力、运动范围和椎体最大位移的生物力学性能。

结果

在四种加载情况下,最大 von Mises 应力位于上下椎弓根螺钉根部。在屈伸、侧屈和轴向旋转情况下,每组中单平面螺钉结构的最大 von Mises 应力介于单轴和多轴螺钉结构之间。考虑到侧屈,与每组中单轴和多轴椎弓根螺钉结构相比,单平面螺钉结构可降低最大 von Mises 应力。新型中间螺钉或不使用新型中间螺钉时,两组的终板最大 von Mises 应力、T12-L1 运动范围和 T12 最大位移的对应结构之间具有可比的结果。

结论

本研究中的观察结果证实,混合单平面椎弓根螺钉系统的生物力学性能与其他后路短节段结构相当。这种新型固定系统的潜在优势可能为微创脊柱固定与椎体增强提供了一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11bb/7691004/a01c6269f854/BMRI2020-5497030.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验