Suppr超能文献

具有贝克-坎贝尔-豪斯多夫展开精确二次截断的电子哈密顿量的酉变换

Unitary Transformation of the Electronic Hamiltonian with an Exact Quadratic Truncation of the Baker-Campbell-Hausdorff Expansion.

作者信息

Lang Robert A, Ryabinkin Ilya G, Izmaylov Artur F

机构信息

Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

出版信息

J Chem Theory Comput. 2021 Jan 12;17(1):66-78. doi: 10.1021/acs.jctc.0c00170. Epub 2020 Dec 9.

Abstract

The application of current and near-term quantum hardware to the electronic structure problem is highly limited by qubit counts, coherence times, and gate fidelities. To address these restrictions within the variational quantum eigensolver (VQE) framework, many recent contributions have suggested dressing the electronic Hamiltonian to include a part of electron correlation, leaving the rest to VQE state preparation. We present a new dressing scheme that combines the preservation of the Hamiltonian hermiticity and an exact quadratic truncation of the Baker-Campbell-Hausdorff expansion. The new transformation is constructed as the exponent of an involutory linear combination (ILC) of anti-commuting Pauli products. It incorporates important strong correlation effects in the dressed Hamiltonian and can be viewed as a classical preprocessing step to alleviate the resource requirements of the subsequent VQE application. The assessment of the new computational scheme for the electronic structure of the LiH, HO, and N molecules shows a significant increase in efficiency compared to the conventional qubit coupled cluster dressings.

摘要

当前及近期量子硬件在电子结构问题上的应用受到量子比特数量、相干时间和门保真度的极大限制。为了在变分量子本征求解器(VQE)框架内解决这些限制,许多近期的研究提出对电子哈密顿量进行修饰,使其包含一部分电子关联,而将其余部分留给VQE态制备。我们提出了一种新的修饰方案,该方案结合了哈密顿量厄米性的保持以及Baker-Campbell-Hausdorff展开的精确二次截断。新的变换被构造为反对易泡利积的对合线性组合(ILC)的指数。它在修饰后的哈密顿量中纳入了重要的强关联效应,并且可以被视为一个经典预处理步骤,以减轻后续VQE应用的资源需求。对LiH、HO和N分子电子结构的新计算方案的评估表明,与传统的量子比特耦合簇修饰相比,效率有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验