Kumar Ashutosh, Asthana Ayush, Masteran Conner, Valeev Edward F, Zhang Yu, Cincio Lukasz, Tretiak Sergei, Dub Pavel A
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
J Chem Theory Comput. 2022 Sep 13;18(9):5312-5324. doi: 10.1021/acs.jctc.2c00520. Epub 2022 Aug 19.
Simulation of electronic structure is one of the most promising applications on noisy intermediate-scale quantum (NISQ) era devices. However, NISQ devices suffer from a number of challenges like limited qubit connectivity, short coherence times, and sizable gate error rates. Thus, desired quantum algorithms should require shallow circuit depths and low qubit counts to take advantage of these devices. Here, we attempt to reduce quantum resource requirements for molecular simulations on a quantum computer while maintaining the desired accuracy with the help of classical quantum chemical theories of canonical transformation and explicit correlation. In this work, compact ab initio Hamiltonians are generated classically, in the second quantized form, through an approximate similarity transformation of the Hamiltonian with (a) an explicitly correlated two-body unitary operator with generalized pair excitations that remove the Coulombic electron-electron singularities from the Hamiltonian and (b) a unitary one-body operator to efficiently capture the orbital relaxation effects required for accurate description of the excited states. The resulting transcorrelated Hamiltonians are able to describe both the ground and the excited states of molecular systems in a balanced manner. Using the variational quantum eigensolver (VQE) method based on the unitary coupled cluster with singles and doubles (UCCSD) ansatz and only a minimal basis set (ANO-RCC-MB), we demonstrate that the transcorrelated Hamiltonians can produce ground state energies comparable to the reference CCSD energies with the much larger cc-pVTZ basis set. This leads to a reduction in the number of required CNOT gates by more than 3 orders of magnitude for the chemical species studied in this work. Furthermore, using the quantum equation of motion (qEOM) formalism in conjunction with the transcorrelated Hamiltonian, we are able to reduce the deviations in the excitation energies from the reference EOM-CCSD/cc-pVTZ values by an order of magnitude. The transcorrelated Hamiltonians developed here are Hermitian and contain only one- and two-body interaction terms and thus can be easily combined with any quantum algorithm for accurate electronic structure simulations.
电子结构模拟是噪声中等规模量子(NISQ)时代设备最具前景的应用之一。然而,NISQ设备面临诸多挑战,如量子比特连接性有限、相干时间短以及可观的门错误率。因此,理想的量子算法应具有浅电路深度和低量子比特数,以便利用这些设备的优势。在此,我们试图借助正则变换和显式相关的经典量子化学理论,在量子计算机上进行分子模拟时减少量子资源需求,同时保持所需的精度。在这项工作中,通过哈密顿量与(a)具有广义对激发的显式相关两体酉算子进行近似相似变换,该算子可消除哈密顿量中的库仑电子 - 电子奇点,以及(b)一个酉一体算子以有效捕获准确描述激发态所需的轨道弛豫效应,从而经典地生成紧凑的从头算哈密顿量,其形式为二次量子化形式。所得的变换相关哈密顿量能够以平衡的方式描述分子系统的基态和激发态。使用基于单双激发酉耦合簇(UCCSD)假设且仅使用最小基组(ANO - RCC - MB)的变分量子本征求解器(VQE)方法,我们证明变换相关哈密顿量能够产生与使用大得多的cc - pVTZ基组的参考CCSD能量相当的基态能量。这使得本工作中所研究化学物种所需的CNOT门数量减少了超过3个数量级。此外,结合变换相关哈密顿量使用量子运动方程(qEOM)形式,我们能够将激发能与参考EOM - CCSD/cc - pVTZ值的偏差降低一个数量级。这里开发的变换相关哈密顿量是厄米的,仅包含一体和两体相互作用项,因此可以很容易地与任何用于精确电子结构模拟的量子算法相结合。